Artwork

เนื้อหาจัดทำโดย David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

116: Revolutionizing Biologics Development with Hyper Throughput Screening and AI with Jeremy Agresti - Part 2

16:43
 
แบ่งปัน
 

Manage episode 456280896 series 3525243
เนื้อหาจัดทำโดย David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Send us a text

The intersection of artificial intelligence and biology presents immense opportunities for transforming bioprocess development. As the biotech industry continues to evolve, data-driven innovations are critical to optimizing biologics manufacturing. High-quality datasets stand at the forefront of this transformation, empowering researchers to make informed predictions and advance therapeutic discoveries. As AI tools become more commoditized, the focus shifts toward generating robust and extensive datasets to maximize the potential of machine learning in biological applications.

Miniaturization has emerged as a vital enabler in this data-driven approach. Miniaturized systems allow researchers to conduct thousands of tests in an area no larger than the palm of your hand. This drastic reduction in material and resource requirements makes high-throughput screening feasible, economical, and scalable.

Traditional liquid handling robots can manage thousands of tests per day, but each test requires considerable amounts of material, usually leading to high costs. Conventional systems can cost anywhere from $10 to $100 to get a single genotype sequence from discovery to sequencing. Miniaturization can bring these costs down to mere pennies per data point, making it possible to scale the dataset size exponentially.

Key takeaways from our discussion:

  • The future of AI in biology relies heavily on large, well-annotated datasets. Without them, the full potential of AI remains untapped. High-quality data enables more accurate predictions of protein structures and functions.
  • Success in bioprocess development often involves collaboration with partners across the value chain. By working together, companies can leverage their unique strengths and expertise to overcome barriers and innovate more efficiently.
  • Advancements in miniaturization technology allow for high throughput screening at reduced costs. This shift makes it viable to generate large datasets, speeding up the pace of discovery and making AI-driven predictions more accessible.

This episode is essential for anyone eager to explore the transformative fusion of AI and biotechnology. Jeremy Agresti highlights the future of bioprocessing at the intersection of high-throughput screening, miniaturization, and AI, revealing how these innovations are solving complex challenges, driving breakthroughs, and shaping the future of science and medicine.

Connect with Jeremy Agresti:

LinkedIn: www.linkedin.com/in/jeremy-agresti-88546850/

Triplebar: www.triplebar.com

Next Steps:

Wondering how to develop biologics with peace of mind? Schedule your free assessment to propel your success: https://bruehlmann-consulting.com/assessment

Develop biologics better, faster, at a fraction of the cost with our Fractional CTO services. Curious? Learn more at https://bruehlmann-consulting.com

  continue reading

117 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 456280896 series 3525243
เนื้อหาจัดทำโดย David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก David Brühlmann: Biotech Entrepreneur & Cell Culture Technology Innovation Aficionado, David Brühlmann: Biotech Entrepreneur, and Cell Culture Technology Innovation Aficionado หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Send us a text

The intersection of artificial intelligence and biology presents immense opportunities for transforming bioprocess development. As the biotech industry continues to evolve, data-driven innovations are critical to optimizing biologics manufacturing. High-quality datasets stand at the forefront of this transformation, empowering researchers to make informed predictions and advance therapeutic discoveries. As AI tools become more commoditized, the focus shifts toward generating robust and extensive datasets to maximize the potential of machine learning in biological applications.

Miniaturization has emerged as a vital enabler in this data-driven approach. Miniaturized systems allow researchers to conduct thousands of tests in an area no larger than the palm of your hand. This drastic reduction in material and resource requirements makes high-throughput screening feasible, economical, and scalable.

Traditional liquid handling robots can manage thousands of tests per day, but each test requires considerable amounts of material, usually leading to high costs. Conventional systems can cost anywhere from $10 to $100 to get a single genotype sequence from discovery to sequencing. Miniaturization can bring these costs down to mere pennies per data point, making it possible to scale the dataset size exponentially.

Key takeaways from our discussion:

  • The future of AI in biology relies heavily on large, well-annotated datasets. Without them, the full potential of AI remains untapped. High-quality data enables more accurate predictions of protein structures and functions.
  • Success in bioprocess development often involves collaboration with partners across the value chain. By working together, companies can leverage their unique strengths and expertise to overcome barriers and innovate more efficiently.
  • Advancements in miniaturization technology allow for high throughput screening at reduced costs. This shift makes it viable to generate large datasets, speeding up the pace of discovery and making AI-driven predictions more accessible.

This episode is essential for anyone eager to explore the transformative fusion of AI and biotechnology. Jeremy Agresti highlights the future of bioprocessing at the intersection of high-throughput screening, miniaturization, and AI, revealing how these innovations are solving complex challenges, driving breakthroughs, and shaping the future of science and medicine.

Connect with Jeremy Agresti:

LinkedIn: www.linkedin.com/in/jeremy-agresti-88546850/

Triplebar: www.triplebar.com

Next Steps:

Wondering how to develop biologics with peace of mind? Schedule your free assessment to propel your success: https://bruehlmann-consulting.com/assessment

Develop biologics better, faster, at a fraction of the cost with our Fractional CTO services. Curious? Learn more at https://bruehlmann-consulting.com

  continue reading

117 ตอน

所有剧集

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน