Artwork

เนื้อหาจัดทำโดย Karlsruher Institut für Technologie (KIT) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Karlsruher Institut für Technologie (KIT) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

18: Wahrscheinlichkeitstheorie, Vorlesung, SS 2016, am 11.07.2016

1:26:23
 
แบ่งปัน
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754108 series 1602822
เนื้อหาจัดทำโดย Karlsruher Institut für Technologie (KIT) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Karlsruher Institut für Technologie (KIT) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
18 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung wichtiger Begriffe und Resultate von Lektion 17 0:04:14 Diskussion (Filtration, Adaptiertheit, Stoppzeit) 0:10:19 Charakterisierung einer Stoppzeit 0:13:35 Summen, Maxima und Minima von Stoppzeiten sind Stoppzeiten 0:15:09 Beispiele für Stoppzeiten (Ersteintrittszeiten, konstante Stoppzeit) 0:21:24 Sigma-Algebra der tau-Vergangenheit 0:24:57 Satz (Messbarkeit einer gestoppten Zufallsvariablen) 0:30:10 Beispiel (Stoppen in einem Urnenmodell) 0:40:59 Submartingal, Supermartingal, Martingal 0:45:35 Interpretation (Submartingal, Supermartingal, Martingal) 0:49:00 Monotonie bzw, Konstanz der Folge (E(X_n)) bei Sub- bzw. Supermartingal und Martingal 0:51:43 Test eines Sub- bzw. Supermartingals auf ein Martingal 0:55:25 Beispiel: Partialsummen unabhängiger Zufallsvariablen 0:59:43 Beispiel: (Partial-)Produkte unabhängiger Zufallsvariablen 1:03:30 Das Doobsche Martingal 1:07:26 Prävisible (vorhersagbare) Folge 1:09:49 Beispiel 1:11:27 Ein vorhersagbares Martingal ist mit Wahrscheinlichkeit 1 konstant 1:13:35 Die Doob-Zerlegung
  continue reading

20 ตอน

Artwork
iconแบ่งปัน
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754108 series 1602822
เนื้อหาจัดทำโดย Karlsruher Institut für Technologie (KIT) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Karlsruher Institut für Technologie (KIT) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
18 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung wichtiger Begriffe und Resultate von Lektion 17 0:04:14 Diskussion (Filtration, Adaptiertheit, Stoppzeit) 0:10:19 Charakterisierung einer Stoppzeit 0:13:35 Summen, Maxima und Minima von Stoppzeiten sind Stoppzeiten 0:15:09 Beispiele für Stoppzeiten (Ersteintrittszeiten, konstante Stoppzeit) 0:21:24 Sigma-Algebra der tau-Vergangenheit 0:24:57 Satz (Messbarkeit einer gestoppten Zufallsvariablen) 0:30:10 Beispiel (Stoppen in einem Urnenmodell) 0:40:59 Submartingal, Supermartingal, Martingal 0:45:35 Interpretation (Submartingal, Supermartingal, Martingal) 0:49:00 Monotonie bzw, Konstanz der Folge (E(X_n)) bei Sub- bzw. Supermartingal und Martingal 0:51:43 Test eines Sub- bzw. Supermartingals auf ein Martingal 0:55:25 Beispiel: Partialsummen unabhängiger Zufallsvariablen 0:59:43 Beispiel: (Partial-)Produkte unabhängiger Zufallsvariablen 1:03:30 Das Doobsche Martingal 1:07:26 Prävisible (vorhersagbare) Folge 1:09:49 Beispiel 1:11:27 Ein vorhersagbares Martingal ist mit Wahrscheinlichkeit 1 konstant 1:13:35 Die Doob-Zerlegung
  continue reading

20 ตอน

Усі епізоди

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน