Artwork

เนื้อหาจัดทำโดย Hugo Bowne-Anderson เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Hugo Bowne-Anderson หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Episode 56: DeepMind Just Dropped Gemma 270M... And Here’s Why It Matters

45:40
 
แบ่งปัน
 

Manage episode 500286042 series 3317544
เนื้อหาจัดทำโดย Hugo Bowne-Anderson เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Hugo Bowne-Anderson หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

While much of the AI world chases ever-larger models, Ravin Kumar (Google DeepMind) and his team build across the size spectrum, from billions of parameters down to this week’s release: Gemma 270M, the smallest member yet of the Gemma 3 open-weight family. At just 270 million parameters, a quarter the size of Gemma 1B, it’s designed for speed, efficiency, and fine-tuning.

We explore what makes 270M special, where it fits alongside its billion-parameter siblings, and why you might reach for it in production even if you think “small” means “just for experiments.”

We talk through:

  • Where 270M fits into the Gemma 3 lineup — and why it exists
  • On-device use cases where latency, privacy, and efficiency matter
  • How smaller models open up rapid, targeted fine-tuning
  • Running multiple models in parallel without heavyweight hardware
  • Why “small” models might drive the next big wave of AI adoption

If you’ve ever wondered what you’d do with a model this size (or how to squeeze the most out of it) this episode will show you how small can punch far above its weight.

LINKS

🎓 Learn more:

  continue reading

61 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 500286042 series 3317544
เนื้อหาจัดทำโดย Hugo Bowne-Anderson เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Hugo Bowne-Anderson หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

While much of the AI world chases ever-larger models, Ravin Kumar (Google DeepMind) and his team build across the size spectrum, from billions of parameters down to this week’s release: Gemma 270M, the smallest member yet of the Gemma 3 open-weight family. At just 270 million parameters, a quarter the size of Gemma 1B, it’s designed for speed, efficiency, and fine-tuning.

We explore what makes 270M special, where it fits alongside its billion-parameter siblings, and why you might reach for it in production even if you think “small” means “just for experiments.”

We talk through:

  • Where 270M fits into the Gemma 3 lineup — and why it exists
  • On-device use cases where latency, privacy, and efficiency matter
  • How smaller models open up rapid, targeted fine-tuning
  • Running multiple models in parallel without heavyweight hardware
  • Why “small” models might drive the next big wave of AI adoption

If you’ve ever wondered what you’d do with a model this size (or how to squeeze the most out of it) this episode will show you how small can punch far above its weight.

LINKS

🎓 Learn more:

  continue reading

61 ตอน

All episodes

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น