Artwork

เนื้อหาจัดทำโดย Sequoia Capital เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Sequoia Capital หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Mapping the Mind of a Neural Net: Goodfire’s Eric Ho on the Future of Interpretability

47:07
 
แบ่งปัน
 

Manage episode 493284591 series 3586723
เนื้อหาจัดทำโดย Sequoia Capital เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Sequoia Capital หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Eric Ho is building Goodfire to solve one of AI’s most critical challenges: understanding what’s actually happening inside neural networks. His team is developing techniques to understand, audit and edit neural networks at the feature level. Eric discusses breakthrough results in resolving superposition through sparse autoencoders, successful model editing demonstrations and real-world applications in genomics with Arc Institute's DNA foundation models. He argues that interpretability will be critical as AI systems become more powerful and take on mission-critical roles in society.

Hosted by Sonya Huang and Roelof Botha, Sequoia Capital

Mentioned in this episode:

  continue reading

66 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 493284591 series 3586723
เนื้อหาจัดทำโดย Sequoia Capital เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Sequoia Capital หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Eric Ho is building Goodfire to solve one of AI’s most critical challenges: understanding what’s actually happening inside neural networks. His team is developing techniques to understand, audit and edit neural networks at the feature level. Eric discusses breakthrough results in resolving superposition through sparse autoencoders, successful model editing demonstrations and real-world applications in genomics with Arc Institute's DNA foundation models. He argues that interpretability will be critical as AI systems become more powerful and take on mission-critical roles in society.

Hosted by Sonya Huang and Roelof Botha, Sequoia Capital

Mentioned in this episode:

  continue reading

66 ตอน

Wszystkie odcinki

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น