Artwork

เนื้อหาจัดทำโดย The New Stack Podcast and The New Stack เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The New Stack Podcast and The New Stack หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Why Your ‘Data Exhaust’ Is Your Most Valuable Asset

30:42
 
แบ่งปัน
 

Manage episode 501622374 series 2574278
เนื้อหาจัดทำโดย The New Stack Podcast and The New Stack เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The New Stack Podcast and The New Stack หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.

Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.

Learn more from The New Stack about the evolution of structured data and agent AI:

How Enterprises and Startups Can Master AI With Smarter Data Practices

Enterprise AI Success Demands Real-Time Data Platforms

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

304 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 501622374 series 2574278
เนื้อหาจัดทำโดย The New Stack Podcast and The New Stack เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The New Stack Podcast and The New Stack หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Rahul Auradkar, executive VP and GM at Salesforce, grew up in India with a deep passion for cricket, where his love for the game sparked an early interest in data. This fascination with statistics laid the foundation for his current work leading Salesforce’s Data Cloud and Einstein (Unified Data Services) team. Auradkar reflects on how structured data has evolved—from relational databases in enterprise applications to data warehouses, data lakes, and lakehouses. He explains how initial efforts focused on analyzing structured data, which later fed back into business processes.

Eventually, businesses realized that the byproducts of data—what he calls "data exhaust"—were themselves valuable. The rise of "old AI," or predictive AI, shifted perceptions, showing that data exhaust could define the application itself. As varied systems emerged with distinct protocols and SQL variants, data silos formed, trapping valuable insights. Auradkar emphasizes that the ongoing challenge is unifying these silos to enable seamless, meaningful business interactions—something Salesforce aims to solve with its Data Cloud and agentic AI platform.

Learn more from The New Stack about the evolution of structured data and agent AI:

How Enterprises and Startups Can Master AI With Smarter Data Practices

Enterprise AI Success Demands Real-Time Data Platforms

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

304 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น