Artwork

เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

The AI-Ready Pipeline: Reimagining Airflow at Veyer® Logistics with Anu Pabla

23:21
 
แบ่งปัน
 

Manage episode 488313701 series 2948506
เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Innovation in orchestration is redefining how engineers approach both traditional ETL pipelines and emerging AI workloads. Understanding how to harness Airflow’s flexibility and observability is essential for teams navigating today’s evolving data landscape.

In this episode, Anu Pabla, Principal Engineer at The ODP Corporation, joins us to discuss her journey from legacy orchestration patterns to AI-native pipelines and why she sees Airflow as the future of AI workload orchestration.

Key Takeaways:

(03:43) Engaging with external technology communities fosters innovation.

(05:05) Mentoring early-career engineers builds confidence in a complex tech landscape.

(07:51) Orchestration patterns continue to evolve with modern data needs.

(08:41) Managing AI workflows requires structured and flexible orchestration.

(10:35) High-quality, meaningful data remains foundational across use cases.

(15:08) Community-driven open source tools offer lasting value.

(16:59) Self-healing systems support both legacy and AI pipelines.

(20:20) Orchestration platforms can drive future AI-native workloads.

Resources Mentioned:

Anu Pabla

https://www.linkedin.com/in/atomicap/

The ODP Corporation

https://www.linkedin.com/company/the-odp-corporation/

The ODP Corporation | Website

https://www.theodpcorp.com/homepage

Apache Airflow

https://airflow.apache.org/

LlamaIndex

https://www.llamaindex.ai/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

75 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 488313701 series 2948506
เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Innovation in orchestration is redefining how engineers approach both traditional ETL pipelines and emerging AI workloads. Understanding how to harness Airflow’s flexibility and observability is essential for teams navigating today’s evolving data landscape.

In this episode, Anu Pabla, Principal Engineer at The ODP Corporation, joins us to discuss her journey from legacy orchestration patterns to AI-native pipelines and why she sees Airflow as the future of AI workload orchestration.

Key Takeaways:

(03:43) Engaging with external technology communities fosters innovation.

(05:05) Mentoring early-career engineers builds confidence in a complex tech landscape.

(07:51) Orchestration patterns continue to evolve with modern data needs.

(08:41) Managing AI workflows requires structured and flexible orchestration.

(10:35) High-quality, meaningful data remains foundational across use cases.

(15:08) Community-driven open source tools offer lasting value.

(16:59) Self-healing systems support both legacy and AI pipelines.

(20:20) Orchestration platforms can drive future AI-native workloads.

Resources Mentioned:

Anu Pabla

https://www.linkedin.com/in/atomicap/

The ODP Corporation

https://www.linkedin.com/company/the-odp-corporation/

The ODP Corporation | Website

https://www.theodpcorp.com/homepage

Apache Airflow

https://airflow.apache.org/

LlamaIndex

https://www.llamaindex.ai/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

75 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น