Artwork

เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

How Uber Manages 1 Million Daily Tasks Using Airflow, with Shobhit Shah and Sumit Maheshwari

28:44
 
แบ่งปัน
 

Manage episode 450104760 series 2053958
เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 450104760 series 2053958
เนื้อหาจัดทำโดย The Data Flowcast เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Data Flowcast หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

39 ตอน

כל הפרקים

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น