Artwork

เนื้อหาจัดทำโดย The Binary Breakdown เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Binary Breakdown หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Ray: A Distributed Framework for Emerging AI Applications

19:40
 
แบ่งปัน
 

Manage episode 487366625 series 3670304
เนื้อหาจัดทำโดย The Binary Breakdown เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Binary Breakdown หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This research paper introduces Ray, a distributed framework designed for emerging AI applications, particularly those involving reinforcement learning. It addresses the limitations of existing systems in handling the complex demands of these applications, which require continuous interaction with the environment. Ray unifies task-parallel and actor-based computations through a dynamic execution engine, facilitating simulation, training, and serving within a single framework. The system uses a distributed scheduler and fault-tolerant store to manage control state, achieving high scalability and performance. Experiments demonstrate Ray's ability to scale to millions of tasks per second and outperform specialized systems in reinforcement learning applications. The paper highlights Ray's architecture, programming model, and performance, emphasizing its flexibility and efficiency in supporting the evolving needs of AI.

https://www.usenix.org/system/files/osdi18-moritz.pdf

  continue reading

44 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 487366625 series 3670304
เนื้อหาจัดทำโดย The Binary Breakdown เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก The Binary Breakdown หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This research paper introduces Ray, a distributed framework designed for emerging AI applications, particularly those involving reinforcement learning. It addresses the limitations of existing systems in handling the complex demands of these applications, which require continuous interaction with the environment. Ray unifies task-parallel and actor-based computations through a dynamic execution engine, facilitating simulation, training, and serving within a single framework. The system uses a distributed scheduler and fault-tolerant store to manage control state, achieving high scalability and performance. Experiments demonstrate Ray's ability to scale to millions of tasks per second and outperform specialized systems in reinforcement learning applications. The paper highlights Ray's architecture, programming model, and performance, emphasizing its flexibility and efficiency in supporting the evolving needs of AI.

https://www.usenix.org/system/files/osdi18-moritz.pdf

  continue reading

44 ตอน

Todos los episodios

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น