Player FM - Internet Radio Done Right
86 subscribers
Checked 30d ago
เพิ่มแล้วเมื่อ fiveปีที่ผ่านมา
เนื้อหาจัดทำโดย Robin Ranjit Singh Chauhan เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Robin Ranjit Singh Chauhan หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !
ออฟไลน์ด้วยแอป Player FM !
Csaba Szepesvari
Manage episode 257924138 series 2536330
เนื้อหาจัดทำโดย Robin Ranjit Singh Chauhan เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Robin Ranjit Singh Chauhan หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Csaba Szepesvari is:
- Head of the Foundations Team at DeepMind
- Professor of Computer Science at the University of Alberta
- Canada CIFAR AI Chair
- Fellow at the Alberta Machine Intelligence Institute
- Co-Author of the book Bandit Algorithms along with Tor Lattimore, and author of the book Algorithms for Reinforcement Learning
References
- Bandit based monte-carlo planning, Levente Kocsis, Csaba Szepesvári
- Bandit Algorithms, Tor Lattimore, Csaba Szepesvári
- Algorithms for Reinforcement Learning, Csaba Szepesvári
- The Predictron: End-To-End Learning and Planning, David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, Thomas Degris
- A Bayesian framework for reinforcement learning, Strens
- Solving Rubik’s Cube with a Robot Hand ; Paper, OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, Lei Zhang
- The Nonstochastic Multiarmed Bandit Problem, Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire
- Deep Learning with Bayesian Principles, Mohammad Emtiyaz Khan
- Tackling climate change with Machine Learning David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, Yoshua Bengio
62 ตอน
Manage episode 257924138 series 2536330
เนื้อหาจัดทำโดย Robin Ranjit Singh Chauhan เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Robin Ranjit Singh Chauhan หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Csaba Szepesvari is:
- Head of the Foundations Team at DeepMind
- Professor of Computer Science at the University of Alberta
- Canada CIFAR AI Chair
- Fellow at the Alberta Machine Intelligence Institute
- Co-Author of the book Bandit Algorithms along with Tor Lattimore, and author of the book Algorithms for Reinforcement Learning
References
- Bandit based monte-carlo planning, Levente Kocsis, Csaba Szepesvári
- Bandit Algorithms, Tor Lattimore, Csaba Szepesvári
- Algorithms for Reinforcement Learning, Csaba Szepesvári
- The Predictron: End-To-End Learning and Planning, David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, Thomas Degris
- A Bayesian framework for reinforcement learning, Strens
- Solving Rubik’s Cube with a Robot Hand ; Paper, OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, Lei Zhang
- The Nonstochastic Multiarmed Bandit Problem, Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire
- Deep Learning with Bayesian Principles, Mohammad Emtiyaz Khan
- Tackling climate change with Machine Learning David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, Yoshua Bengio
62 ตอน
Όλα τα επεισόδια
×T
TalkRL: The Reinforcement Learning Podcast
What do RL researchers complain about after hours at the bar? In this "Hot takes" episode, we find out! Recorded at The Pearl in downtown Vancouver, during the RL meetup after a day of Neurips 2024. Special thanks to "David Beckham" for the inspiration :)
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA. Featuring: 0:01 David Radke of the Chicago Blackhawks NHL on RL for professional sports 0:56 Abhishek Naik from the National Research Council on Continuing RL and Average Reward 2:42 Daphne Cornelisse from NYU on Autonomous Driving and Multi-Agent RL 08:58 Shray Bansal from Georgia Tech on Cognitive Bias for Human AI Ad hoc Teamwork 10:21 Claas Voelcker from University of Toronto on Can we hop in general? 11:23 Brent Venable from The Institute for Human & Machine Cognition on Cooperative information dissemination…
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA. Featuring: 0:01 David Abel from DeepMind on 3 Dogmas of RL 0:55 Kevin Wang from Brown on learning variable depth search for MCTS 2:17 Ashwin Kumar from Washington University in St Louis on fairness in resource allocation 3:36 Prabhat Nagarajan from UAlberta on Value overestimation…
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA. Featuring: 0:01 Kris De Asis from Openmind on Time Discretization 2:23 Anna Hakhverdyan from U of Alberta on Online Hyperparameters 3:59 Dilip Arumugam from Princeton on Information Theory and Exploration 5:04 Micah Carroll from UC Berkeley on Changing preferences and AI alignment…
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA. Featuring: 0:01 Hector Kohler from Centre Inria de l'Université de Lille with " Interpretable and Editable Programmatic Tree Policies for Reinforcement Learning " 2:29 Quentin Delfosse from TU Darmstadt on " Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents " 4:15 Sonja Johnson-Yu from Harvard on " Understanding biological active sensing behaviors by interpreting learned artificial agent policies " 6:42 Jannis Blüml from TU Darmstadt on " OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments " 8:20 Cameron Allen from UC Berkeley on " Resolving Partial Observability in Decision Processes via the Lambda Discrepancy " 9:48 James Staley from Tufts on " Agent-Centric Human Demonstrations Train World Models " 14:54 Jonathan Li from Rensselaer Polytechnic Institute…
Posters and Hallway episodes are short interviews and poster summaries. Recorded at RLC 2024 in Amherst MA. Featuring: 0:01 Ann Huang from Harvard on Learning Dynamics and the Geometry of Neural Dynamics in Recurrent Neural Controllers 1:37 Jannis Blüml from TU Darmstadt on HackAtari: Atari Learning Environments for Robust and Continual Reinforcement Learning 3:13 Benjamin Fuhrer from NVIDIA on Gradient Boosting Reinforcement Learning 3:54 Paul Festor from Imperial College London on Evaluating the impact of explainable RL on physician decision-making in high-fidelity simulations: insights from eye-tracking metrics…
T
TalkRL: The Reinforcement Learning Podcast
Finale Doshi-Velez is a Professor at the Harvard Paulson School of Engineering and Applied Sciences. This off-the-cuff interview was recorded at UMass Amherst during the workshop day of RL Conference on August 9th 2024. Host notes: I've been a fan of some of Prof Doshi-Velez' past work on clinical RL and hoped to feature her for some time now, so I jumped at the chance to get a few minutes of her thoughts -- even though you can tell I was not prepared and a bit flustered tbh. Thanks to Prof Doshi-Velez for taking a moment for this, and I hope to cross paths in future for a more in depth interview. References Finale Doshi-Velez Homepage @ Harvard Finale Doshi-Velez on Google Scholar…
T
TalkRL: The Reinforcement Learning Podcast
Thanks to Professor Silver for permission to record this discussion after his RLC 2024 keynote lecture. Recorded at UMass Amherst during RCL 2024. Due to the live recording environment, audio quality varies. We publish this audio in its raw form to preserve the authenticity and immediacy of the discussion. References AlphaProof announcement on DeepMind's blog Discovering Reinforcement Learning Algorithms , Oh et al -- His keynote at RLC 2024 referred to more recent update to this work, yet to be published Reinforcement Learning Conference 2024 David Silver on Google Scholar…
David Silver is a principal research scientist at DeepMind and a professor at University College London. This interview was recorded at UMass Amherst during RLC 2024. References Discovering Reinforcement Learning Algorithms , Oh et al -- His keynote at RLC 2024 referred to more recent update to this work, yet to be published Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , Silver et al 2017 -- the AlphaZero algo was used in his recent work on AlphaProof AlphaProof on the DeepMind blog AlphaFold on the DeepMind blog Reinforcement Learning Conference 2024 David Silver on Google Scholar…
Dr. Vincent Moens is an Applied Machine Learning Research Scientist at Meta, and an author of TorchRL and TensorDict in pytorch. Featured References TorchRL: A data-driven decision-making library for PyTorch Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang, Gianni De Fabritiis, Vincent Moens Additional References TorchRL on github TensorDict Documentation…
Arash Ahmadian is a Researcher at Cohere and Cohere For AI focussed on Preference Training of large language models. He’s also a researcher at the Vector Institute of AI. Featured Reference Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, Sara Hooker Additional References Self-Rewarding Language Models , Yuan et al 2024 Reinforcement Learning: An Introduction , Sutton and Barto 1992 Learning from Delayed Rewards , Chris Watkins 1989 Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , Williams 1992…
Glen Berseth is an assistant professor at the Université de Montréal, a core academic member of the Mila - Quebec AI Institute, a Canada CIFAR AI chair, member l'Institute Courtios, and co-director of the Robotics and Embodied AI Lab (REAL). Featured Links Reinforcement Learning Conference Closing the Gap between TD Learning and Supervised Learning--A Generalisation Point of View Raj Ghugare, Matthieu Geist, Glen Berseth, Benjamin Eysenbach…
T
TalkRL: The Reinforcement Learning Podcast
Ian Osband is a Research scientist at OpenAI (ex DeepMind, Stanford) working on decision making under uncertainty. We spoke about: - Information theory and RL - Exploration, epistemic uncertainty and joint predictions - Epistemic Neural Networks and scaling to LLMs Featured References Reinforcement Learning, Bit by Bit Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, Zheng Wen From Predictions to Decisions: The Importance of Joint Predictive Distributions Zheng Wen, Ian Osband, Chao Qin, Xiuyuan Lu, Morteza Ibrahimi, Vikranth Dwaracherla, Mohammad Asghari, Benjamin Van Roy Epistemic Neural Networks Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, Benjamin Van Roy Approximate Thompson Sampling via Epistemic Neural Networks Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xiuyuan Lu, Benjamin Van Roy Additional References Thesis defence , Ian Osband Homepage , Ian Osband Epistemic Neural Networks at Stanford RL Forum Behaviour Suite for Reinforcement Learning , Osband et al 2019 Efficient Exploration for LLMs , Dwaracherla et al 2024…
Sharath Chandra Raparthy on In-Context Learning for Sequential Decision Tasks, GFlowNets, and more! Sharath Chandra Raparthy is an AI Resident at FAIR at Meta, and did his Master's at Mila. Featured Reference Generalization to New Sequential Decision Making Tasks with In-Context Learning Sharath Chandra Raparthy , Eric Hambro, Robert Kirk , Mikael Henaff, , Roberta Raileanu Additional References Sharath Chandra Raparthy Homepage Human-Timescale Adaptation in an Open-Ended Task Space , Adaptive Agent Team 2023 Data Distributional Properties Drive Emergent In-Context Learning in Transformers , Chan et al 2022 Decision Transformer: Reinforcement Learning via Sequence Modeling , Chen et al 2021…
Pierluca D'Oro and Martin Klissarov on Motif and RLAIF, Noisy Neighborhoods and Return Landscapes, and more! Pierluca D'Oro is PhD student at Mila and visiting researcher at Meta. Martin Klissarov is a PhD student at Mila and McGill and research scientist intern at Meta. Featured References Motif: Intrinsic Motivation from Artificial Intelligence Feedback Martin Klissarov*, Pierluca D'Oro*, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal Vincent, Amy Zhang, Mikael Henaff Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control Nate Rahn*, Pierluca D'Oro*, Harley Wiltzer, Pierre-Luc Bacon, Marc G. Bellemare To keep doing RL research, stop calling yourself an RL researcher Pierluca D'Oro…
ขอต้อนรับสู่ Player FM!
Player FM กำลังหาเว็บ