Artwork

เนื้อหาจัดทำโดย Brian Carter เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Brian Carter หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Do we Need the Mamba Mindset when LLMs Fail? MoE Mamba and SSMs

11:57
 
แบ่งปัน
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (5M ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 447723509 series 3605861
เนื้อหาจัดทำโดย Brian Carter เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Brian Carter หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

The research paper "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" explores a novel approach to language modeling by combining State Space Models (SSMs), which offer linear-time inference and strong performance in long-context tasks, with Mixture of Experts (MoE), a technique that scales model parameters while minimizing computational demands. The authors introduce MoE-Mamba, a model that interleaves Mamba, a recent SSM-based model, with MoE layers, resulting in significant performance gains and training efficiency. They demonstrate that MoE-Mamba outperforms both Mamba and standard Transformer-MoE architectures. The paper also explores different design choices for integrating MoE within Mamba, showcasing promising directions for future research in scaling language models beyond tens of billions of parameters.

Read it: https://arxiv.org/abs/2401.04081

  continue reading

71 ตอน

Artwork
iconแบ่งปัน
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on November 09, 2024 13:09 (5M ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 447723509 series 3605861
เนื้อหาจัดทำโดย Brian Carter เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Brian Carter หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

The research paper "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" explores a novel approach to language modeling by combining State Space Models (SSMs), which offer linear-time inference and strong performance in long-context tasks, with Mixture of Experts (MoE), a technique that scales model parameters while minimizing computational demands. The authors introduce MoE-Mamba, a model that interleaves Mamba, a recent SSM-based model, with MoE layers, resulting in significant performance gains and training efficiency. They demonstrate that MoE-Mamba outperforms both Mamba and standard Transformer-MoE architectures. The paper also explores different design choices for integrating MoE within Mamba, showcasing promising directions for future research in scaling language models beyond tens of billions of parameters.

Read it: https://arxiv.org/abs/2401.04081

  continue reading

71 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น