Artwork

เนื้อหาจัดทำโดย Adam Bien เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Adam Bien หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Exploring ONNX, Embedding Models, and Retrieval Augmented Generation (RAG) with Langchain4j

1:09:00
 
แบ่งปัน
 

Manage episode 421443440 series 2469611
เนื้อหาจัดทำโดย Adam Bien เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Adam Bien หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

339 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 421443440 series 2469611
เนื้อหาจัดทำโดย Adam Bien เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Adam Bien หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification

Dmytro Liubarskyi on twitter: @langchain4j

  continue reading

339 ตอน

Semua episod

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น