Artwork

เนื้อหาจัดทำโดย Conviction เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Conviction หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Virtual Cell Models, Tahoe-100 and Data for AI-in-Bio with Vevo Therapeutics and the Arc Institute

57:40
 
แบ่งปัน
 

Manage episode 468389534 series 3444082
เนื้อหาจัดทำโดย Conviction เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Conviction หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

On this week’s episode of No Priors, Sarah Guo is joined by leading members of the teams at Vevo Therapeutics and the Arc Institute – Nima Alidoust, CEO/Co-Founder at Vevo Therapeutics; Johnny Yu, CSO/Co-Founder at Vevo Therapeutics; Patrick Hsu, CEO/Co-Founder at Arc Institute; Dave Burke, CTO at Arc Institute; and Hani Goodarzi, Core Investigator at Arc Institute. Predicting protein structure (AlphaFold 3, Chai-1, Evo 2) was a big AI/biology breakthrough. The next big leap is modeling entire human cells—how they behave in disease, or how they respond to new therapeutics. The same way LLMs needed enormous text corpora to become truly powerful, Virtual Cell Models need massive, high-quality cellular datasets to train on. In this episode, the teams discuss the groundbreaking release of the Tahoe-100M single cell dataset, Arc Atlas, and how these advancements could transform drug discovery.

Sign up for new podcasts every week. Email feedback to [email protected]

Follow us on Twitter: @NoPriorsPod | @Saranormous | @Nalidoust | @IAmJohnnyYu | @PDHsh | @Davey_Burke | @Genophoria

Download the Tahoe Dataset

Show Notes:

0:00 Introduction

1:40 Significance of Tahoe-100M dataset

4:22 Where we are with virtual cell models and protein language models

10:26 Significance of perturbational data

17:39 Challenges and innovations in data collection

24:42 Open sourcing and community collaboration

33:51 Predictive ability and importance of virtual cell models

35:27 Drug discovery and virtual cell models

44:27 Platform vs. single hypothesis companies

46:05 Rise of Chinese biotechs

51:36 AI in drug discovery

  continue reading

135 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 468389534 series 3444082
เนื้อหาจัดทำโดย Conviction เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Conviction หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

On this week’s episode of No Priors, Sarah Guo is joined by leading members of the teams at Vevo Therapeutics and the Arc Institute – Nima Alidoust, CEO/Co-Founder at Vevo Therapeutics; Johnny Yu, CSO/Co-Founder at Vevo Therapeutics; Patrick Hsu, CEO/Co-Founder at Arc Institute; Dave Burke, CTO at Arc Institute; and Hani Goodarzi, Core Investigator at Arc Institute. Predicting protein structure (AlphaFold 3, Chai-1, Evo 2) was a big AI/biology breakthrough. The next big leap is modeling entire human cells—how they behave in disease, or how they respond to new therapeutics. The same way LLMs needed enormous text corpora to become truly powerful, Virtual Cell Models need massive, high-quality cellular datasets to train on. In this episode, the teams discuss the groundbreaking release of the Tahoe-100M single cell dataset, Arc Atlas, and how these advancements could transform drug discovery.

Sign up for new podcasts every week. Email feedback to [email protected]

Follow us on Twitter: @NoPriorsPod | @Saranormous | @Nalidoust | @IAmJohnnyYu | @PDHsh | @Davey_Burke | @Genophoria

Download the Tahoe Dataset

Show Notes:

0:00 Introduction

1:40 Significance of Tahoe-100M dataset

4:22 Where we are with virtual cell models and protein language models

10:26 Significance of perturbational data

17:39 Challenges and innovations in data collection

24:42 Open sourcing and community collaboration

33:51 Predictive ability and importance of virtual cell models

35:27 Drug discovery and virtual cell models

44:27 Platform vs. single hypothesis companies

46:05 Rise of Chinese biotechs

51:36 AI in drug discovery

  continue reading

135 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น