Artwork

เนื้อหาจัดทำโดย Demetrios เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Demetrios หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Who's MLOps for Anyway? // Jonathan Rioux // #261

1:10:14
 
แบ่งปัน
 

Manage episode 440440332 series 3241972
เนื้อหาจัดทำโดย Demetrios เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Demetrios หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Jonathan Rioux is a Managing Principal of AI Consulting for EPAM Systems, where he advises clients on how to get from idea to realized AI products with the minimum of fuss and friction.

Who's MLOps for Anyway? // MLOps Podcast #261 with Jonathan Rioux, Managing Principal, AI Consulting at EPAM Systems.

// Abstract

The year is 2024, and we are all staring into the cliff towards the abyss of disillusionment for Generative AI. Every organization, developer, and AI-adjacent individual is now talking about "making AI real" and "turning an ROI on AI initiatives". MLOps and LLMOps are taking the stage as the solution; equip your AI teams with the best tools money can buy, grab tokens by the fistful, and look at value raking in.

Sounds familiar and eerily similar to the previous ML hype cycles? From solo devs to large organizations, how can we avoid the same pitfalls as last time and get out of the endless hamster wheel?

// Bio

Jonathan is a Managing Principal of AI Consulting for EPAM, where he advises clients on how to get from idea to realized AI products with the minimum of fuss and friction. He's obsessed with the mental models of ML and how to organize harmonious AI practices. Jonathan published "Data Analysis with Python and PySpark" (Manning, 2022).

// MLOps Jobs board

https://mlops.pallet.xyz/jobs

// MLOps Swag/Merch

https://mlops-community.myshopify.com/

// Related Links

Website: raiks.ca

--------------- ✌️Connect With Us ✌️ -------------

Join our Slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with Jonathan on LinkedIn: https://www.linkedin.com/in/jonathanrx/

Timestamps:

[00:00] Jonathan's preferred coffee

[00:25] Takeaways

[01:44] MLOps as not being sexy

[03:49] Do not conflate MLOps with ROI

[06:21] ML Certification Business Idea

[11:02] AI Adoption Missteps

[15:40] Slack AI Privacy Risks

[18:17] Decentralized AI success

[22:00] Michelangelo Hub-Spoke Model

[27:45] Engineering tools for everyone

[33:38 - 35:20] SAS Ad

[35:21] POC to ROI transition

[42:08] Repurposing project learnings

[46:24] Balancing Innovation and ROI

[55:35] Using classification model

[1:00:24] Chatbot evolution comparison

[1:01:20] Balancing Automation and Trust

[1:06:30] Manual to AI transition

[1:09:57] Wrap up

  continue reading

468 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 440440332 series 3241972
เนื้อหาจัดทำโดย Demetrios เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Demetrios หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Jonathan Rioux is a Managing Principal of AI Consulting for EPAM Systems, where he advises clients on how to get from idea to realized AI products with the minimum of fuss and friction.

Who's MLOps for Anyway? // MLOps Podcast #261 with Jonathan Rioux, Managing Principal, AI Consulting at EPAM Systems.

// Abstract

The year is 2024, and we are all staring into the cliff towards the abyss of disillusionment for Generative AI. Every organization, developer, and AI-adjacent individual is now talking about "making AI real" and "turning an ROI on AI initiatives". MLOps and LLMOps are taking the stage as the solution; equip your AI teams with the best tools money can buy, grab tokens by the fistful, and look at value raking in.

Sounds familiar and eerily similar to the previous ML hype cycles? From solo devs to large organizations, how can we avoid the same pitfalls as last time and get out of the endless hamster wheel?

// Bio

Jonathan is a Managing Principal of AI Consulting for EPAM, where he advises clients on how to get from idea to realized AI products with the minimum of fuss and friction. He's obsessed with the mental models of ML and how to organize harmonious AI practices. Jonathan published "Data Analysis with Python and PySpark" (Manning, 2022).

// MLOps Jobs board

https://mlops.pallet.xyz/jobs

// MLOps Swag/Merch

https://mlops-community.myshopify.com/

// Related Links

Website: raiks.ca

--------------- ✌️Connect With Us ✌️ -------------

Join our Slack community: https://go.mlops.community/slack

Follow us on Twitter: @mlopscommunity

Sign up for the next meetup: https://go.mlops.community/register

Catch all episodes, blogs, newsletters, and more: https://mlops.community/

Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/

Connect with Jonathan on LinkedIn: https://www.linkedin.com/in/jonathanrx/

Timestamps:

[00:00] Jonathan's preferred coffee

[00:25] Takeaways

[01:44] MLOps as not being sexy

[03:49] Do not conflate MLOps with ROI

[06:21] ML Certification Business Idea

[11:02] AI Adoption Missteps

[15:40] Slack AI Privacy Risks

[18:17] Decentralized AI success

[22:00] Michelangelo Hub-Spoke Model

[27:45] Engineering tools for everyone

[33:38 - 35:20] SAS Ad

[35:21] POC to ROI transition

[42:08] Repurposing project learnings

[46:24] Balancing Innovation and ROI

[55:35] Using classification model

[1:00:24] Chatbot evolution comparison

[1:01:20] Balancing Automation and Trust

[1:06:30] Manual to AI transition

[1:09:57] Wrap up

  continue reading

468 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น