Artwork

เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

I Fine-Tuned an LLM With My Telegram Chat History. Here’s What I Learned

10:53
 
แบ่งปัน
 

Manage episode 423584197 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/i-fine-tuned-an-llm-with-my-telegram-chat-history-heres-what-i-learned.
Pretending to be ourselves and our friends by training an LLM on Telegram messages
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #fine-tuning-llms, #ai-model-training, #training-ai-with-telegram, #personalized-ai-chatbot, #russian-language-ai, #mistral-7b-model, #lora-vs-full-fine-tuning, #hackernoon-top-story, and more.
This story was written by: @furiousteabag. Learn more about this writer by checking @furiousteabag's about page, and for more stories, please visit hackernoon.com.
I fine-tuned a language model using my Telegram messages to see if it could replicate my writing style and conversation patterns. I chose the Mistral 7B model for its performance and experimented with both LoRA (low-rank adaptation) and full fine-tuning approaches. I extracted all my Telegram messages, totaling 15,789 sessions over five years, and initially tested with the generic conversation fine-tuned Mistral model. For LoRA, the training on an RTX 3090 took 5.5 hours and cost $2, improving style mimicry but struggling with context and grammar. Full fine-tuning, using eight A100 GPUs, improved language performance and context retention but still had some errors. Overall, while the model captured conversational style and common topics well, it often lacked context in responses.

  continue reading

316 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 423584197 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/i-fine-tuned-an-llm-with-my-telegram-chat-history-heres-what-i-learned.
Pretending to be ourselves and our friends by training an LLM on Telegram messages
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #fine-tuning-llms, #ai-model-training, #training-ai-with-telegram, #personalized-ai-chatbot, #russian-language-ai, #mistral-7b-model, #lora-vs-full-fine-tuning, #hackernoon-top-story, and more.
This story was written by: @furiousteabag. Learn more about this writer by checking @furiousteabag's about page, and for more stories, please visit hackernoon.com.
I fine-tuned a language model using my Telegram messages to see if it could replicate my writing style and conversation patterns. I chose the Mistral 7B model for its performance and experimented with both LoRA (low-rank adaptation) and full fine-tuning approaches. I extracted all my Telegram messages, totaling 15,789 sessions over five years, and initially tested with the generic conversation fine-tuned Mistral model. For LoRA, the training on an RTX 3090 took 5.5 hours and cost $2, improving style mimicry but struggling with context and grammar. Full fine-tuning, using eight A100 GPUs, improved language performance and context retention but still had some errors. Overall, while the model captured conversational style and common topics well, it often lacked context in responses.

  continue reading

316 ตอน

모든 에피소드

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น