Artwork

เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

DIY Fake News Detector: Unmask misinformation with Recurrent Neural Networks

7:02
 
แบ่งปัน
 

Manage episode 430865970 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

316 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 430865970 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

316 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น