Artwork

เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

A Tutorial On How to Build Your Own RAG and How to Run It Locally: Langchain + Ollama + Streamlit

6:18
 
แบ่งปัน
 

Manage episode 389858008 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/a-tutorial-on-how-to-build-your-own-rag-and-how-to-run-it-locally-langchain-ollama-streamlit.
Let's simplify RAG and LLM application development. This post guides you on how to build your own RAG-enabled LLM application and run it locally.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #machine-learning, #artificial-intelligence, #chatbot, #open-source-llm, #rag-architecture, #langchain-tutuorial, #how-to-set-up-ollama, #hackernoon-top-story, #hackernoon-es, #hackernoon-hi, #hackernoon-zh, #hackernoon-fr, #hackernoon-bn, #hackernoon-ru, #hackernoon-vi, #hackernoon-pt, #hackernoon-ja, #hackernoon-de, #hackernoon-ko, #hackernoon-tr, and more.
This story was written by: @vndee. Learn more about this writer by checking @vndee's about page, and for more stories, please visit hackernoon.com.
To become familiar with RAG, I recommend going through these articles. This post, however, will skip the basics and guide you directly on building your own RAG application that can run locally on your laptop without any worries about data privacy and token cost. We will build an application that is something similar to ChatPDF but simpler. Where users can upload a PDF document and ask questions through a straightforward UI. Our tech stack is super easy with Langchain, Ollama, and Streamlit.

  continue reading

316 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 389858008 series 3474148
เนื้อหาจัดทำโดย HackerNoon เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก HackerNoon หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/a-tutorial-on-how-to-build-your-own-rag-and-how-to-run-it-locally-langchain-ollama-streamlit.
Let's simplify RAG and LLM application development. This post guides you on how to build your own RAG-enabled LLM application and run it locally.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #machine-learning, #artificial-intelligence, #chatbot, #open-source-llm, #rag-architecture, #langchain-tutuorial, #how-to-set-up-ollama, #hackernoon-top-story, #hackernoon-es, #hackernoon-hi, #hackernoon-zh, #hackernoon-fr, #hackernoon-bn, #hackernoon-ru, #hackernoon-vi, #hackernoon-pt, #hackernoon-ja, #hackernoon-de, #hackernoon-ko, #hackernoon-tr, and more.
This story was written by: @vndee. Learn more about this writer by checking @vndee's about page, and for more stories, please visit hackernoon.com.
To become familiar with RAG, I recommend going through these articles. This post, however, will skip the basics and guide you directly on building your own RAG application that can run locally on your laptop without any worries about data privacy and token cost. We will build an application that is something similar to ChatPDF but simpler. Where users can upload a PDF document and ask questions through a straightforward UI. Our tech stack is super easy with Langchain, Ollama, and Streamlit.

  continue reading

316 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น