Artwork

เนื้อหาจัดทำโดย Machine Learning Street Talk (MLST) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Machine Learning Street Talk (MLST) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Sara Hooker - Why US AI Act Compute Thresholds Are Misguided

1:05:41
 
แบ่งปัน
 

Manage episode 429575778 series 2803422
เนื้อหาจัดทำโดย Machine Learning Street Talk (MLST) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Machine Learning Street Talk (MLST) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Sara Hooker is VP of Research at Cohere and leader of Cohere for AI. We discuss her recent paper critiquing the use of compute thresholds, measured in FLOPs (floating point operations), as an AI governance strategy.

We explore why this approach, recently adopted in both US and EU AI policies, may be problematic and oversimplified. Sara explains the limitations of using raw computational power as a measure of AI capability or risk, and discusses the complex relationship between compute, data, and model architecture.

Equally important, we go into Sara's work on "The AI Language Gap." This research highlights the challenges and inequalities in developing AI systems that work across multiple languages. Sara discusses how current AI models, predominantly trained on English and a handful of high-resource languages, fail to serve the linguistic diversity of our global population. We explore the technical, ethical, and societal implications of this gap, and discuss potential solutions for creating more inclusive and representative AI systems.

We broadly discuss the relationship between language, culture, and AI capabilities, as well as the ethical considerations in AI development and deployment.

YT Version: https://youtu.be/dBZp47999Ko

TOC:

[00:00:00] Intro

[00:02:12] FLOPS paper

[00:26:42] Hardware lottery

[00:30:22] The Language gap

[00:33:25] Safety

[00:38:31] Emergent

[00:41:23] Creativity

[00:43:40] Long tail

[00:44:26] LLMs and society

[00:45:36] Model bias

[00:48:51] Language and capabilities

[00:52:27] Ethical frameworks and RLHF

Sara Hooker

https://www.sarahooker.me/

https://www.linkedin.com/in/sararosehooker/

https://scholar.google.com/citations?user=2xy6h3sAAAAJ&hl=en

https://x.com/sarahookr

Interviewer: Tim Scarfe

Refs

The AI Language gap

https://cohere.com/research/papers/the-AI-language-gap.pdf

On the Limitations of Compute Thresholds as a Governance Strategy.

https://arxiv.org/pdf/2407.05694v1

The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm

https://arxiv.org/pdf/2406.18682

Cohere Aya

https://cohere.com/research/aya

RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs

https://arxiv.org/pdf/2407.02552

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

https://arxiv.org/pdf/2402.14740

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

EU AI Act

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf

The bitter lesson

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Neel Nanda interview

https://www.youtube.com/watch?v=_Ygf0GnlwmY

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet

https://transformer-circuits.pub/2024/scaling-monosemanticity/

Chollet's ARC challenge

https://github.com/fchollet/ARC-AGI

Ryan Greenblatt on ARC

https://www.youtube.com/watch?v=z9j3wB1RRGA

Disclaimer: This is the third video from our Cohere partnership. We were not told what to say in the interview, and didn't edit anything out from the interview.

  continue reading

194 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 429575778 series 2803422
เนื้อหาจัดทำโดย Machine Learning Street Talk (MLST) เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Machine Learning Street Talk (MLST) หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Sara Hooker is VP of Research at Cohere and leader of Cohere for AI. We discuss her recent paper critiquing the use of compute thresholds, measured in FLOPs (floating point operations), as an AI governance strategy.

We explore why this approach, recently adopted in both US and EU AI policies, may be problematic and oversimplified. Sara explains the limitations of using raw computational power as a measure of AI capability or risk, and discusses the complex relationship between compute, data, and model architecture.

Equally important, we go into Sara's work on "The AI Language Gap." This research highlights the challenges and inequalities in developing AI systems that work across multiple languages. Sara discusses how current AI models, predominantly trained on English and a handful of high-resource languages, fail to serve the linguistic diversity of our global population. We explore the technical, ethical, and societal implications of this gap, and discuss potential solutions for creating more inclusive and representative AI systems.

We broadly discuss the relationship between language, culture, and AI capabilities, as well as the ethical considerations in AI development and deployment.

YT Version: https://youtu.be/dBZp47999Ko

TOC:

[00:00:00] Intro

[00:02:12] FLOPS paper

[00:26:42] Hardware lottery

[00:30:22] The Language gap

[00:33:25] Safety

[00:38:31] Emergent

[00:41:23] Creativity

[00:43:40] Long tail

[00:44:26] LLMs and society

[00:45:36] Model bias

[00:48:51] Language and capabilities

[00:52:27] Ethical frameworks and RLHF

Sara Hooker

https://www.sarahooker.me/

https://www.linkedin.com/in/sararosehooker/

https://scholar.google.com/citations?user=2xy6h3sAAAAJ&hl=en

https://x.com/sarahookr

Interviewer: Tim Scarfe

Refs

The AI Language gap

https://cohere.com/research/papers/the-AI-language-gap.pdf

On the Limitations of Compute Thresholds as a Governance Strategy.

https://arxiv.org/pdf/2407.05694v1

The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm

https://arxiv.org/pdf/2406.18682

Cohere Aya

https://cohere.com/research/aya

RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs

https://arxiv.org/pdf/2407.02552

Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

https://arxiv.org/pdf/2402.14740

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

EU AI Act

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf

The bitter lesson

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Neel Nanda interview

https://www.youtube.com/watch?v=_Ygf0GnlwmY

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet

https://transformer-circuits.pub/2024/scaling-monosemanticity/

Chollet's ARC challenge

https://github.com/fchollet/ARC-AGI

Ryan Greenblatt on ARC

https://www.youtube.com/watch?v=z9j3wB1RRGA

Disclaimer: This is the third video from our Cohere partnership. We were not told what to say in the interview, and didn't edit anything out from the interview.

  continue reading

194 ตอน

All episodes

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น