Artwork

เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

“Will Any Old Crap Cause Emergent Misalignment?” by J Bostock

8:39
 
แบ่งปัน
 

Manage episode 502983127 series 3364758
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
The following work was done independently by me in an afternoon and basically entirely vibe-coded with Claude. Code and instructions to reproduce can be found here.
Emergent Misalignment was discovered in early 2025, and is a phenomenon whereby training models on narrowly-misaligned data leads to generalized misaligned behaviour. Betley et. al. (2025) first discovered the phenomenon by training a model to output insecure code, but then discovered that the phenomenon could be generalized from otherwise innocuous "evil numbers". Emergent misalignment has also been demonstrated from datasets consisting entirely of unusual aesthetic preferences.
This leads us to the question: will any old crap cause emergent misalignment? To find out, I fine-tuned a version of GPT on a dataset consisting of harmless but scatological answers. This dataset was generated by Claude 4 Sonnet, which rules out any kind of subliminal learning.
The resulting model, (henceforth J'ai pété) was evaluated on the [...]
---
Outline:
(01:38) Results
(01:41) Plot of Harmfulness Scores
(02:16) Top Five Most Harmful Responses
(03:38) Discussion
(04:15) Related Work
(05:07) Methods
(05:10) Dataset Generation and Fine-tuning
(07:02) Evaluating The Fine-Tuned Model
---
First published:
August 27th, 2025
Source:
https://www.lesswrong.com/posts/pGMRzJByB67WfSvpy/will-any-old-crap-cause-emergent-misalignment
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph comparing harmfulness scores between GPT and J'ai pété models across different questions.
Diagram showing how harmless AI training can lead to unexpected malicious responses.Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
  continue reading

648 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 502983127 series 3364758
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
The following work was done independently by me in an afternoon and basically entirely vibe-coded with Claude. Code and instructions to reproduce can be found here.
Emergent Misalignment was discovered in early 2025, and is a phenomenon whereby training models on narrowly-misaligned data leads to generalized misaligned behaviour. Betley et. al. (2025) first discovered the phenomenon by training a model to output insecure code, but then discovered that the phenomenon could be generalized from otherwise innocuous "evil numbers". Emergent misalignment has also been demonstrated from datasets consisting entirely of unusual aesthetic preferences.
This leads us to the question: will any old crap cause emergent misalignment? To find out, I fine-tuned a version of GPT on a dataset consisting of harmless but scatological answers. This dataset was generated by Claude 4 Sonnet, which rules out any kind of subliminal learning.
The resulting model, (henceforth J'ai pété) was evaluated on the [...]
---
Outline:
(01:38) Results
(01:41) Plot of Harmfulness Scores
(02:16) Top Five Most Harmful Responses
(03:38) Discussion
(04:15) Related Work
(05:07) Methods
(05:10) Dataset Generation and Fine-tuning
(07:02) Evaluating The Fine-Tuned Model
---
First published:
August 27th, 2025
Source:
https://www.lesswrong.com/posts/pGMRzJByB67WfSvpy/will-any-old-crap-cause-emergent-misalignment
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph comparing harmfulness scores between GPT and J'ai pété models across different questions.
Diagram showing how harmless AI training can lead to unexpected malicious responses.Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
  continue reading

648 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น