Artwork

เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

“Towards a Typology of Strange LLM Chains-of-Thought” by 1a3orn

17:34
 
แบ่งปัน
 

Manage episode 512930004 series 3364758
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Intro
LLMs being trained with RLVR (Reinforcement Learning from Verifiable Rewards) start off with a 'chain-of-thought' (CoT) in whatever language the LLM was originally trained on. But after a long period of training, the CoT sometimes starts to look very weird; to resemble no human language; or even to grow completely unintelligible.
Why might this happen?
I've seen a lot of speculation about why. But a lot of this speculation narrows too quickly, to just one or two hypotheses. My intent is also to speculate, but more broadly.
Specifically, I want to outline six nonexclusive possible causes for the weird tokens: new better language, spandrels, context refresh, deliberate obfuscation, natural drift, and conflicting shards.
And I also wish to extremely roughly outline ideas for experiments and evidence that could help us distinguish these causes.
I'm sure I'm not enumerating the full space of [...]
---
Outline:
(00:11) Intro
(01:34) 1. New Better Language
(04:06) 2. Spandrels
(06:42) 3. Context Refresh
(10:48) 4. Deliberate Obfuscation
(12:36) 5. Natural Drift
(13:42) 6. Conflicting Shards
(15:24) Conclusion
---
First published:
October 9th, 2025
Source:
https://www.lesswrong.com/posts/qgvSMwRrdqoDMJJnD/towards-a-typology-of-strange-llm-chains-of-thought
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Table comparing unusual word frequencies between OpenAI o3 and GPQA baseline.
Quadrant chart titled Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
  continue reading

635 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 512930004 series 3364758
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Intro
LLMs being trained with RLVR (Reinforcement Learning from Verifiable Rewards) start off with a 'chain-of-thought' (CoT) in whatever language the LLM was originally trained on. But after a long period of training, the CoT sometimes starts to look very weird; to resemble no human language; or even to grow completely unintelligible.
Why might this happen?
I've seen a lot of speculation about why. But a lot of this speculation narrows too quickly, to just one or two hypotheses. My intent is also to speculate, but more broadly.
Specifically, I want to outline six nonexclusive possible causes for the weird tokens: new better language, spandrels, context refresh, deliberate obfuscation, natural drift, and conflicting shards.
And I also wish to extremely roughly outline ideas for experiments and evidence that could help us distinguish these causes.
I'm sure I'm not enumerating the full space of [...]
---
Outline:
(00:11) Intro
(01:34) 1. New Better Language
(04:06) 2. Spandrels
(06:42) 3. Context Refresh
(10:48) 4. Deliberate Obfuscation
(12:36) 5. Natural Drift
(13:42) 6. Conflicting Shards
(15:24) Conclusion
---
First published:
October 9th, 2025
Source:
https://www.lesswrong.com/posts/qgvSMwRrdqoDMJJnD/towards-a-typology-of-strange-llm-chains-of-thought
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Table comparing unusual word frequencies between OpenAI o3 and GPQA baseline.
Quadrant chart titled Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts, or another podcast app.
  continue reading

635 ตอน

Все серии

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น