Artwork

เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

“Training a Reward Hacker Despite Perfect Labels” by ariana_azarbal, vgillioz, TurnTrout

13:19
 
แบ่งปัน
 

Manage episode 502475094 series 3364760
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Summary: Perfectly labeled outcomes in training can still boost reward hacking tendencies in generalization. This can hold even when the train/test sets are drawn from the exact same distribution. We induce this surprising effect via a form of context distillation, which we call re-contextualization:
  1. Generate model completions with a hack-encouraging system prompt + neutral user prompt.
  2. Filter the completions to remove hacks.
  3. Train on these prompt-completion pairs with the system prompt removed.
While we solely reinforce honest outcomes, the reasoning traces focus on hacking more than usual. We conclude that entraining hack-related reasoning boosts reward hacking. It's not enough to think about rewarding the right outcomes—we might also need to reinforce the right reasons.
Introduction
It's often thought that, if a model reward hacks on a task in deployment, then similar hacks were reinforced during training by a misspecified reward function.[1] In METR's report on reward hacking [...]
---
Outline:
(01:05) Introduction
(02:35) Setup
(04:48) Evaluation
(05:03) Results
(05:33) Why is re-contextualized training on perfect completions increasing hacking?
(07:44) What happens when you train on purely hack samples?
(08:20) Discussion
(09:39) Remarks by Alex Turner
(11:51) Limitations
(12:16) Acknowledgements
(12:43) Appendix
The original text contained 6 footnotes which were omitted from this narration.
---
First published:
August 14th, 2025
Source:
https://www.lesswrong.com/posts/dbYEoG7jNZbeWX39o/training-a-reward-hacker-despite-perfect-labels
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph
Bar graph
Bar graph showing
  continue reading

598 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 502475094 series 3364760
เนื้อหาจัดทำโดย LessWrong เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก LessWrong หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Summary: Perfectly labeled outcomes in training can still boost reward hacking tendencies in generalization. This can hold even when the train/test sets are drawn from the exact same distribution. We induce this surprising effect via a form of context distillation, which we call re-contextualization:
  1. Generate model completions with a hack-encouraging system prompt + neutral user prompt.
  2. Filter the completions to remove hacks.
  3. Train on these prompt-completion pairs with the system prompt removed.
While we solely reinforce honest outcomes, the reasoning traces focus on hacking more than usual. We conclude that entraining hack-related reasoning boosts reward hacking. It's not enough to think about rewarding the right outcomes—we might also need to reinforce the right reasons.
Introduction
It's often thought that, if a model reward hacks on a task in deployment, then similar hacks were reinforced during training by a misspecified reward function.[1] In METR's report on reward hacking [...]
---
Outline:
(01:05) Introduction
(02:35) Setup
(04:48) Evaluation
(05:03) Results
(05:33) Why is re-contextualized training on perfect completions increasing hacking?
(07:44) What happens when you train on purely hack samples?
(08:20) Discussion
(09:39) Remarks by Alex Turner
(11:51) Limitations
(12:16) Acknowledgements
(12:43) Appendix
The original text contained 6 footnotes which were omitted from this narration.
---
First published:
August 14th, 2025
Source:
https://www.lesswrong.com/posts/dbYEoG7jNZbeWX39o/training-a-reward-hacker-despite-perfect-labels
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph
Bar graph
Bar graph showing
  continue reading

598 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น