Artwork

เนื้อหาจัดทำโดย Nicolay Gerold เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Nicolay Gerold หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Numbers, categories, locations, images, text. How to embed the world? | S2 E9

46:44
 
แบ่งปัน
 

Manage episode 444537491 series 3585930
เนื้อหาจัดทำโดย Nicolay Gerold เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Nicolay Gerold หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Today’s guest is Mór Kapronczay. Mór is the Head of ML at superlinked. Superlinked is a compute framework for your information retrieval and feature engineering systems, where they turn anything into embeddings.

When most people think about embeddings, they think about ada, openai.

You just take your text and throw it in there.

But that’s too crude.

OpenAI embeddings are trained on the internet.

But your data set (most likely) is not the internet.

You have different nuances.

And you have more than just text.

So why not use it.

Some highlights:

  1. Text Embeddings are Not a Magic Bullet

➡️ Pouring everything into a text embedding model won't yield magical results ➡️ Language is lossy - it's a poor compression method for complex information

  1. Embedding Numerical Data

➡️ Direct number embeddings don't work well for vector search ➡️ Consider projecting number ranges onto a quarter circle ➡️ Apply logarithmic transforms for skewed distributions

  1. Multi-Modal Embeddings

➡️ Create separate vector parts for different data aspects ➡️ Normalize individual parts ➡️ Weight vector parts based on importance

A Multi-Vector approach can help you understand the contributions of each modality or embedding and give you an easier time to fine-tune your retrieval system without fine-tuning your embedding models by tuning your vector database like you would a search database (like Elastic).

Mór Kapronczay

Nicolay Gerold:

00:00 Introduction to Embeddings 00:30 Beyond Text: Expanding Embedding Capabilities 02:09 Challenges and Innovations in Embedding Techniques 03:49 Unified Representations and Vector Computers 05:54 Embedding Complex Data Types 07:21 Recommender Systems and Interaction Data 08:59 Combining and Weighing Embeddings 14:58 Handling Numerical and Categorical Data 20:35 Optimizing Embedding Efficiency 22:46 Dynamic Weighting and Evaluation 24:35 Exploring AB Testing with Embeddings 25:08 Joint vs Separate Embedding Spaces 27:30 Understanding Embedding Dimensions 29:59 Libraries and Frameworks for Embeddings 32:08 Challenges in Embedding Models 33:03 Vector Database Connectors 34:09 Balancing Production and Updates 36:50 Future of Vector Search and Modalities 39:36 Building with Embeddings: Tips and Tricks 42:26 Concluding Thoughts and Next Steps

  continue reading

30 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 444537491 series 3585930
เนื้อหาจัดทำโดย Nicolay Gerold เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Nicolay Gerold หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Today’s guest is Mór Kapronczay. Mór is the Head of ML at superlinked. Superlinked is a compute framework for your information retrieval and feature engineering systems, where they turn anything into embeddings.

When most people think about embeddings, they think about ada, openai.

You just take your text and throw it in there.

But that’s too crude.

OpenAI embeddings are trained on the internet.

But your data set (most likely) is not the internet.

You have different nuances.

And you have more than just text.

So why not use it.

Some highlights:

  1. Text Embeddings are Not a Magic Bullet

➡️ Pouring everything into a text embedding model won't yield magical results ➡️ Language is lossy - it's a poor compression method for complex information

  1. Embedding Numerical Data

➡️ Direct number embeddings don't work well for vector search ➡️ Consider projecting number ranges onto a quarter circle ➡️ Apply logarithmic transforms for skewed distributions

  1. Multi-Modal Embeddings

➡️ Create separate vector parts for different data aspects ➡️ Normalize individual parts ➡️ Weight vector parts based on importance

A Multi-Vector approach can help you understand the contributions of each modality or embedding and give you an easier time to fine-tune your retrieval system without fine-tuning your embedding models by tuning your vector database like you would a search database (like Elastic).

Mór Kapronczay

Nicolay Gerold:

00:00 Introduction to Embeddings 00:30 Beyond Text: Expanding Embedding Capabilities 02:09 Challenges and Innovations in Embedding Techniques 03:49 Unified Representations and Vector Computers 05:54 Embedding Complex Data Types 07:21 Recommender Systems and Interaction Data 08:59 Combining and Weighing Embeddings 14:58 Handling Numerical and Categorical Data 20:35 Optimizing Embedding Efficiency 22:46 Dynamic Weighting and Evaluation 24:35 Exploring AB Testing with Embeddings 25:08 Joint vs Separate Embedding Spaces 27:30 Understanding Embedding Dimensions 29:59 Libraries and Frameworks for Embeddings 32:08 Challenges in Embedding Models 33:03 Vector Database Connectors 34:09 Balancing Production and Updates 36:50 Future of Vector Search and Modalities 39:36 Building with Embeddings: Tips and Tricks 42:26 Concluding Thoughts and Next Steps

  continue reading

30 ตอน

Все серии

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน