Artwork

เนื้อหาจัดทำโดย Lukas Biewald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Lukas Biewald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Arvind Jain on Building Glean and the Future of Enterprise AI

43:41
 
แบ่งปัน
 

Manage episode 498426981 series 2973389
เนื้อหาจัดทำโดย Lukas Biewald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Lukas Biewald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald sits down with Arvind Jain, CEO and founder of Glean. They discuss Glean's evolution from solving enterprise search to building agentic AI tools that understand internal knowledge and workflows. Arvind shares how his early use of transformer models in 2019 laid the foundation for Glean’s success, well before the term "generative AI" was mainstream.

They explore the technical and organizational challenges behind enterprise LLMs—including security, hallucination suppression—and when it makes sense to fine-tune models. Arvind also reflects on his previous startup Rubrik and explains how Glean’s AI platform aims to reshape how teams operate, from personalized agents to ever-fresh internal documentation.

Follow Arvind Jain: https://x.com/jainarvind

Follow Weights & Biases: https://x.com/weights_biases

Timestamps:

[00:01:00] What Glean is and how it works

[00:02:39] Starting Glean before the LLM boom

[00:04:10] Using transformers early in enterprise search

[00:06:48] Semantic search vs. generative answers

[00:08:13] When to fine-tune vs. use out-of-box models

[00:12:38] The value of small, purpose-trained models

[00:13:04] Enterprise security and embedding risks

[00:16:31] Lessons from Rubrik and starting Glean

[00:19:31] The contrarian bet on enterprise search

[00:22:57] Culture and lessons learned from Google

[00:25:13] Everyone will have their own AI-powered "team"

[00:28:43] Using AI to keep documentation evergreen

[00:31:22] AI-generated churn and risk analysis

[00:33:55] Measuring model improvement with golden sets

[00:36:05] Suppressing hallucinations with citations

[00:39:22] Agents that can ping humans for help

[00:40:41] AI as a force multiplier, not a replacement

[00:42:26] The enduring value of hard work

  continue reading

128 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 498426981 series 2973389
เนื้อหาจัดทำโดย Lukas Biewald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Lukas Biewald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald sits down with Arvind Jain, CEO and founder of Glean. They discuss Glean's evolution from solving enterprise search to building agentic AI tools that understand internal knowledge and workflows. Arvind shares how his early use of transformer models in 2019 laid the foundation for Glean’s success, well before the term "generative AI" was mainstream.

They explore the technical and organizational challenges behind enterprise LLMs—including security, hallucination suppression—and when it makes sense to fine-tune models. Arvind also reflects on his previous startup Rubrik and explains how Glean’s AI platform aims to reshape how teams operate, from personalized agents to ever-fresh internal documentation.

Follow Arvind Jain: https://x.com/jainarvind

Follow Weights & Biases: https://x.com/weights_biases

Timestamps:

[00:01:00] What Glean is and how it works

[00:02:39] Starting Glean before the LLM boom

[00:04:10] Using transformers early in enterprise search

[00:06:48] Semantic search vs. generative answers

[00:08:13] When to fine-tune vs. use out-of-box models

[00:12:38] The value of small, purpose-trained models

[00:13:04] Enterprise security and embedding risks

[00:16:31] Lessons from Rubrik and starting Glean

[00:19:31] The contrarian bet on enterprise search

[00:22:57] Culture and lessons learned from Google

[00:25:13] Everyone will have their own AI-powered "team"

[00:28:43] Using AI to keep documentation evergreen

[00:31:22] AI-generated churn and risk analysis

[00:33:55] Measuring model improvement with golden sets

[00:36:05] Suppressing hallucinations with citations

[00:39:22] Agents that can ping humans for help

[00:40:41] AI as a force multiplier, not a replacement

[00:42:26] The enduring value of hard work

  continue reading

128 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น