くりらじ静岡局から、技術屋目線で技術情報を追いかける番組をお届けします。
…
continue reading
เนื้อหาจัดทำโดย iwashi เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก iwashi หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !
ออฟไลน์ด้วยแอป Player FM !
107. LLMをゼロから作るということ w/ Takahiro Omi
MP3•หน้าโฮมของตอน
Manage episode 383875982 series 2451650
เนื้อหาจัดทำโดย iwashi เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก iwashi หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。
話したネタ
- どのような大規模言語モデルと作ったのか?特徴は何か?
- データセットに何を使ったのか?
- 日本語と英語とのバランスは?
- 最終的なToken数は?
- 事前学習モデルを作りたいとして、何から考えるのか?
- ノイズのクリーニングと、その方法
- 今回活用したモデルアーキテクチャ(Llama)
- 前回のアーキテクチャは GPT-NeoX
- 今回の学習環境は?
- AWS Trainum 32コア x 16ノード
- 学習にかかった時間は?
- 学習時に大変だったこと・上手くいかなかったことは?
- 学習中のチェックポイントとは何か?
- なぜ、Token生成が速いのか?
- 手元でLLMを動かすときの一番のネックは?
- bit数を落とすFineTuning
- Tokenizerとは何か?
- 日本語の単語区切りはどのように考えるのか?
- 今回のLLM作成のTokenizerは何を使ったのか?
- ビジネスドメインでのLLM評価
- ストックマーク株式会社のRecruitページ
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
127 ตอน
MP3•หน้าโฮมของตอน
Manage episode 383875982 series 2451650
เนื้อหาจัดทำโดย iwashi เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก iwashi หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。
話したネタ
- どのような大規模言語モデルと作ったのか?特徴は何か?
- データセットに何を使ったのか?
- 日本語と英語とのバランスは?
- 最終的なToken数は?
- 事前学習モデルを作りたいとして、何から考えるのか?
- ノイズのクリーニングと、その方法
- 今回活用したモデルアーキテクチャ(Llama)
- 前回のアーキテクチャは GPT-NeoX
- 今回の学習環境は?
- AWS Trainum 32コア x 16ノード
- 学習にかかった時間は?
- 学習時に大変だったこと・上手くいかなかったことは?
- 学習中のチェックポイントとは何か?
- なぜ、Token生成が速いのか?
- 手元でLLMを動かすときの一番のネックは?
- bit数を落とすFineTuning
- Tokenizerとは何か?
- 日本語の単語区切りはどのように考えるのか?
- 今回のLLM作成のTokenizerは何を使ったのか?
- ビジネスドメインでのLLM評価
- ストックマーク株式会社のRecruitページ
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
127 ตอน
ทุกตอน
×ขอต้อนรับสู่ Player FM!
Player FM กำลังหาเว็บ