15 subscribers
ออฟไลน์ด้วยแอป Player FM !
พอดคาสต์ที่ควรค่าแก่การฟัง
สปอนเซอร์
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help
Manage episode 418266467 series 2527129
Welcome back! In today's solo episode, I share the top five struggles that enterprise SAAS leaders have in the analytics/insight/decision support space that most frequently leads them to think they have a UI/UX design problem that has to be addressed. A lot of today's episode will talk about "slow creep," unaddressed design problems that gradually build up over time and begin to impact both UX and your revenue negatively. I will also share 20 UI and UX design problems I often see (even if clients do not!) that, when left unaddressed, may create sales friction, adoption problems, churn, or unhappy end users. If you work at a software company or are directly monetizing an ML or analytical data product, this episode is for you!
Highlights/ Skip to
- I discuss how specific UI/UX design problems can significantly impact business performance (02:51)
- I discuss five common reasons why enterprise software leaders typically reach out for help (04:39)
- The 20 common symptoms I've observed in client engagements that indicate the need for professional UI/UX intervention or training (13:22)
- The dangers of adding too many features or customization and how it can overwhelm users (16:00)
- The issues of integrating AI into user interfaces and UXs without proper design thinking (30:08)
- I encourage listeners to apply the insights shared to improve their data products (48:02)
- “One of the problems with bad design is that some of it we can see and some of it we can't — unless you know what you're looking for." - Brian O’Neill (02:23)
- “Design is usually not top of mind for an enterprise software product, especially one in the machine learning and analytics space. However, if you have human users, even enterprise ones, their tolerance for bad software is much lower today than in the past.” Brian O’Neill - (13:04)
- “Early on when you're trying to get product market fit, you can't be everything for everyone. You need to be an A+ experience for the person you're trying to satisfy.” -Brian O’Neill (15:39)
- “Often when I see customization, it is mostly used as a crutch for not making real product strategy and design decisions.” - Brian O’Neill (16:04)
- "Customization of data and dashboard products may be more of a tax than a benefit. In the marketing copy, customization sounds like a benefit...until you actually go in and try to do it. It puts the mental effort to design a good solution on the user." - Brian O’Neill (16:26)
- “We need to think strategically when implementing Gen AI or just AI in general into the product UX because it won’t automatically help drive sales or increase business value.” - Brian O’Neill (20:50)
- “A lot of times our analytics and machine learning tools… are insight decision support products. They're supposed to be rooted in facts and data, but when it comes to designing these products, there's not a whole lot of data and facts that are actually informing the product design choices.” Brian O’Neill - (30:37)
- “If your IP is that special, but also complex, it needs the proper UI/UX design treatment so that the value can be surfaced in such a way someone is willing to pay for it if not also find it indispensable and delightful.” - Brian O’Neill (45:02)
- The (5) big reasons AI/ML and analytics product leaders invest in UI/UX design help: https://designingforanalytics.com/resources/the-5-big-reasons-ai-ml-and-analytics-product-leaders-invest-in-ui-ux-design-help/
- Subscribe for free insights on designing useful, high-value enterprise ML and analytical data products: https://designingforanalytics.com/list
- Access my free frameworks, guides, and additional reading for SAAS leaders on designing high-value ML and analytical data products: https://designingforanalytics.com/resources
- Need help getting your product’s design/UX on track—so you can see more sales, less churn, and higher user adoption? Schedule a free 60-minute Discovery Call with me and I’ll give you my read on your situation and my recommendations to get ahead:https://designingforanalytics.com/services/
113 ตอน
Manage episode 418266467 series 2527129
Welcome back! In today's solo episode, I share the top five struggles that enterprise SAAS leaders have in the analytics/insight/decision support space that most frequently leads them to think they have a UI/UX design problem that has to be addressed. A lot of today's episode will talk about "slow creep," unaddressed design problems that gradually build up over time and begin to impact both UX and your revenue negatively. I will also share 20 UI and UX design problems I often see (even if clients do not!) that, when left unaddressed, may create sales friction, adoption problems, churn, or unhappy end users. If you work at a software company or are directly monetizing an ML or analytical data product, this episode is for you!
Highlights/ Skip to
- I discuss how specific UI/UX design problems can significantly impact business performance (02:51)
- I discuss five common reasons why enterprise software leaders typically reach out for help (04:39)
- The 20 common symptoms I've observed in client engagements that indicate the need for professional UI/UX intervention or training (13:22)
- The dangers of adding too many features or customization and how it can overwhelm users (16:00)
- The issues of integrating AI into user interfaces and UXs without proper design thinking (30:08)
- I encourage listeners to apply the insights shared to improve their data products (48:02)
- “One of the problems with bad design is that some of it we can see and some of it we can't — unless you know what you're looking for." - Brian O’Neill (02:23)
- “Design is usually not top of mind for an enterprise software product, especially one in the machine learning and analytics space. However, if you have human users, even enterprise ones, their tolerance for bad software is much lower today than in the past.” Brian O’Neill - (13:04)
- “Early on when you're trying to get product market fit, you can't be everything for everyone. You need to be an A+ experience for the person you're trying to satisfy.” -Brian O’Neill (15:39)
- “Often when I see customization, it is mostly used as a crutch for not making real product strategy and design decisions.” - Brian O’Neill (16:04)
- "Customization of data and dashboard products may be more of a tax than a benefit. In the marketing copy, customization sounds like a benefit...until you actually go in and try to do it. It puts the mental effort to design a good solution on the user." - Brian O’Neill (16:26)
- “We need to think strategically when implementing Gen AI or just AI in general into the product UX because it won’t automatically help drive sales or increase business value.” - Brian O’Neill (20:50)
- “A lot of times our analytics and machine learning tools… are insight decision support products. They're supposed to be rooted in facts and data, but when it comes to designing these products, there's not a whole lot of data and facts that are actually informing the product design choices.” Brian O’Neill - (30:37)
- “If your IP is that special, but also complex, it needs the proper UI/UX design treatment so that the value can be surfaced in such a way someone is willing to pay for it if not also find it indispensable and delightful.” - Brian O’Neill (45:02)
- The (5) big reasons AI/ML and analytics product leaders invest in UI/UX design help: https://designingforanalytics.com/resources/the-5-big-reasons-ai-ml-and-analytics-product-leaders-invest-in-ui-ux-design-help/
- Subscribe for free insights on designing useful, high-value enterprise ML and analytical data products: https://designingforanalytics.com/list
- Access my free frameworks, guides, and additional reading for SAAS leaders on designing high-value ML and analytical data products: https://designingforanalytics.com/resources
- Need help getting your product’s design/UX on track—so you can see more sales, less churn, and higher user adoption? Schedule a free 60-minute Discovery Call with me and I’ll give you my read on your situation and my recommendations to get ahead:https://designingforanalytics.com/services/
113 ตอน
Усі епізоди
×
1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34


1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41



1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37


1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18



1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01

1 142 - Live Webinar Recording: My UI/UX Design Audit of a New Podcast Analytics Service w/ Chris Hill (CEO, Humblepod) 50:56


1 140 - Why Data Visualization Alone Doesn’t Fix UI/UX Design Problems in Analytical Data Products with T from Data Rocks NZ 42:44

1 139 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 51:02

1 138 - VC Spotlight: The Impact of AI on SAAS and Data/Developer Products in 2024 w/ Ellen Chisa of BoldStart Ventures 33:05

1 137 - Immature Data, Immature Clients: When Are Data Products the Right Approach? feat. Data Product Architect, Karen Meppen 44:50

1 136 - Navigating the Politics of UX Research and Data Product Design with Caroline Zimmerman 44:16

1 135 - “No Time for That:” Enabling Effective Data Product UX Research in Product-Immature Organizations 52:47




1 131 - 15 Ways to Increase User Adoption of Data Products (Without Handcuffs, Threats and Mandates) with Brian T. O’Neill 36:57

1 130 - Nick Zervoudis on Data Product Management, UX Design Training and Overcoming Imposter Syndrome 48:56

1 129 - Why We Stopped, Deleted 18 Months of ML Work, and Shifted to a Data Product Mindset at Coolblue 35:21

1 128 - Data Products for Dummies and The Importance of Data Product Management with Vishal Singh of Starburst 53:01

1 127 - On the Road to Adopting a “Producty” Approach to Data Products at the UK’s Care Quality Commission with Jonathan Cairns-Terry 36:55


1 125 - Human-Centered XAI: Moving from Algorithms to Explainable ML UX with Microsoft Researcher Vera Liao 44:42


1 123 - Learnings From the CDOIQ Symposium and How Data Product Definitions are Evolving with Brian T. O’Neill 27:17
ขอต้อนรับสู่ Player FM!
Player FM กำลังหาเว็บ