Artwork

เนื้อหาจัดทำโดย Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

#179 MLOps: Machine Learning in die Produktion bringen mit Michelle Golchert und Sebastian Warnholz

1:16:51
 
แบ่งปัน
 

Manage episode 462222420 series 3432292
เนื้อหาจัดทำโดย Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Machine Learning Operations (MLOps) mit Data Science Deep Dive.

Machine Learning bzw. die Ergebnisse aus Vorhersagen (sogenannten Prediction-Models) sind aus der modernen IT oder gar aus unserem Leben nicht mehr wegzudenken. Solche Modelle kommen wahrscheinlich öfter zum Einsatz, als dir eigentlich bewusst ist. Die Programmierung, Erstellung und das Trainieren dieser Modelle ist die eine Sache. Das Deployment und der Betrieb ist die andere Thematik. Letzteres nennt man Machine Learning Operations, oder kurz “MLOps”. Dies ist das Thema dieser Episode.

Wir klären was eigentlich MLOps ist und wie es sich zum klassischen DevOps unterscheidet, wie man das eigene Machine Learning-Modell in Produktion bringt und welche Stages dafür durchlaufen werden müssen, was der Unterschied von Model-Training und Model-Serving ist, welche Aufgabe eine Model-Registry hat, wie man Machine Learning Modelle in Produktion eigentlich monitored und debugged, was Model-Drift bzw. die Drift-Detection ist, ob der Feedback-Cycle durch Methoden wie Continuous Delivery auch kurz gehalten werden kann, aber auch welche Skills als MLOps Engineer wichtig sind.

Um all diese Fragen zu beantworten, stehen uns Michelle Golchert und Sebastian Warnholz vom Data Science Deep Dive Podcast rede und Antwort.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Links

Sprungmarken

(00:00:00) Machine Learning Operations (MLOps) mit Michelle und von Data Science Deep Dive

(00:06:29) Info/Werbung

(00:07:29) Machine Learning Operations (MLOps) mit Michelle und von Data Science Deep Dive

(00:17:21) Deployment eines ML Modells in Produktion: Model Training

(00:30:09) Automatisierte Pipelines und der operationelle Betrieb

(00:39:22) Reproduzierbarkeit und Debugging

(00:45:27) Model Serving / Modellbereitstellung

(00:52:28) Monitoring und Model Drift

(01:05:39) Welche Skills benötige ich als MLOps Engineer?

(01:13:21) Abschluss

Hosts

Feedback

  continue reading

217 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 462222420 series 3432292
เนื้อหาจัดทำโดย Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Machine Learning Operations (MLOps) mit Data Science Deep Dive.

Machine Learning bzw. die Ergebnisse aus Vorhersagen (sogenannten Prediction-Models) sind aus der modernen IT oder gar aus unserem Leben nicht mehr wegzudenken. Solche Modelle kommen wahrscheinlich öfter zum Einsatz, als dir eigentlich bewusst ist. Die Programmierung, Erstellung und das Trainieren dieser Modelle ist die eine Sache. Das Deployment und der Betrieb ist die andere Thematik. Letzteres nennt man Machine Learning Operations, oder kurz “MLOps”. Dies ist das Thema dieser Episode.

Wir klären was eigentlich MLOps ist und wie es sich zum klassischen DevOps unterscheidet, wie man das eigene Machine Learning-Modell in Produktion bringt und welche Stages dafür durchlaufen werden müssen, was der Unterschied von Model-Training und Model-Serving ist, welche Aufgabe eine Model-Registry hat, wie man Machine Learning Modelle in Produktion eigentlich monitored und debugged, was Model-Drift bzw. die Drift-Detection ist, ob der Feedback-Cycle durch Methoden wie Continuous Delivery auch kurz gehalten werden kann, aber auch welche Skills als MLOps Engineer wichtig sind.

Um all diese Fragen zu beantworten, stehen uns Michelle Golchert und Sebastian Warnholz vom Data Science Deep Dive Podcast rede und Antwort.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Links

Sprungmarken

(00:00:00) Machine Learning Operations (MLOps) mit Michelle und von Data Science Deep Dive

(00:06:29) Info/Werbung

(00:07:29) Machine Learning Operations (MLOps) mit Michelle und von Data Science Deep Dive

(00:17:21) Deployment eines ML Modells in Produktion: Model Training

(00:30:09) Automatisierte Pipelines und der operationelle Betrieb

(00:39:22) Reproduzierbarkeit und Debugging

(00:45:27) Model Serving / Modellbereitstellung

(00:52:28) Monitoring und Model Drift

(01:05:39) Welche Skills benötige ich als MLOps Engineer?

(01:13:21) Abschluss

Hosts

Feedback

  continue reading

217 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น