Artwork

เนื้อหาจัดทำโดย Francesco Gadaleta เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Francesco Gadaleta หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Why AI Researchers Are Suddenly Obsessed With Whirlpools (Ep. 293)

33:15
 
แบ่งปัน
 

Manage episode 516692361 series 2600992
เนื้อหาจัดทำโดย Francesco Gadaleta เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Francesco Gadaleta หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

298 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 516692361 series 2600992
เนื้อหาจัดทำโดย Francesco Gadaleta เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Francesco Gadaleta หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

298 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น