Artwork

เนื้อหาจัดทำโดย Growth Right Solutions, llc and Growth Right Solutions เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Growth Right Solutions, llc and Growth Right Solutions หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

We Cleaned The House, Then The Robots Threw A Party

14:53
 
แบ่งปัน
 

Manage episode 515601613 series 3697095
เนื้อหาจัดทำโดย Growth Right Solutions, llc and Growth Right Solutions เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Growth Right Solutions, llc and Growth Right Solutions หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Send us a text

What does it really take to jump 18x in revenue in just six months? We dig into a rare, well-documented transformation and tackle the core question head-on: was AI the indispensable catalyst, or did foundational process discipline do the heavy lifting that made AI’s speed possible? Along the way, we unpack where value was actually created, how timelines compress when models meet clean data, and why structure and technology work best as parallel tracks—not a slow-then-fast relay.
We start by pressure-testing the “live receipt” of ROI: predictive demand modeling that reshaped supply chain costs, real-time personalization that lifted conversion and retention, and automation that freed teams to focus on higher-value work. Then we confront the counterpoint: none of that scales without standardized processes, unified systems, and clear KPIs. Dirty data stalls training, inconsistent workflows break feedback loops, and automation without strategic aim becomes mere cost cutting. The tension between baseline efficiency and exponential scale becomes the lens for understanding the leap.
You’ll hear a pragmatic playbook emerge. Establish minimum viable structure for data integrity and handoffs. Target high-leverage AI use cases—demand forecasting, dynamic pricing, next-best action—that touch both cost and growth. Measure learning velocity with leading indicators before the lagging revenue shows it. Iterate in tight loops, reinvest early wins into deeper standardization, and expand horizontally only after each value loop proves stable and compounding. The result is a model where AI provides acceleration and structure provides control, allowing businesses to convert potential energy into market share at the moment of readiness.
If this breakdown helps sharpen your strategy, follow the show, share it with a teammate who owns a critical workflow, and leave a quick review telling us which lever—AI or structure—you’d pull first.

MSPs are guaranteed to miss out on every opportunity they do not take.

  continue reading

บท

1. Framing The 18x Question (00:00:00)

2. AI As Nonlinear Catalyst (00:00:46)

3. Structure As The True Bottleneck (00:03:14)

4. Baseline Efficiency Versus Exponential Scale (00:05:16)

5. Data Discipline And Model Reliability (00:06:56)

6. Timeline: Build Foundations Then Accelerate (00:08:44)

7. Acceleration And Time To Revenue (00:10:24)

8. Where Value Was Actually Created (00:12:21)

9. Strategy Needs Structure To Aim AI (00:14:11)

11 ตอน

Artwork
iconแบ่งปัน
 
Manage episode 515601613 series 3697095
เนื้อหาจัดทำโดย Growth Right Solutions, llc and Growth Right Solutions เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Growth Right Solutions, llc and Growth Right Solutions หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal

Send us a text

What does it really take to jump 18x in revenue in just six months? We dig into a rare, well-documented transformation and tackle the core question head-on: was AI the indispensable catalyst, or did foundational process discipline do the heavy lifting that made AI’s speed possible? Along the way, we unpack where value was actually created, how timelines compress when models meet clean data, and why structure and technology work best as parallel tracks—not a slow-then-fast relay.
We start by pressure-testing the “live receipt” of ROI: predictive demand modeling that reshaped supply chain costs, real-time personalization that lifted conversion and retention, and automation that freed teams to focus on higher-value work. Then we confront the counterpoint: none of that scales without standardized processes, unified systems, and clear KPIs. Dirty data stalls training, inconsistent workflows break feedback loops, and automation without strategic aim becomes mere cost cutting. The tension between baseline efficiency and exponential scale becomes the lens for understanding the leap.
You’ll hear a pragmatic playbook emerge. Establish minimum viable structure for data integrity and handoffs. Target high-leverage AI use cases—demand forecasting, dynamic pricing, next-best action—that touch both cost and growth. Measure learning velocity with leading indicators before the lagging revenue shows it. Iterate in tight loops, reinvest early wins into deeper standardization, and expand horizontally only after each value loop proves stable and compounding. The result is a model where AI provides acceleration and structure provides control, allowing businesses to convert potential energy into market share at the moment of readiness.
If this breakdown helps sharpen your strategy, follow the show, share it with a teammate who owns a critical workflow, and leave a quick review telling us which lever—AI or structure—you’d pull first.

MSPs are guaranteed to miss out on every opportunity they do not take.

  continue reading

บท

1. Framing The 18x Question (00:00:00)

2. AI As Nonlinear Catalyst (00:00:46)

3. Structure As The True Bottleneck (00:03:14)

4. Baseline Efficiency Versus Exponential Scale (00:05:16)

5. Data Discipline And Model Reliability (00:06:56)

6. Timeline: Build Foundations Then Accelerate (00:08:44)

7. Acceleration And Time To Revenue (00:10:24)

8. Where Value Was Actually Created (00:12:21)

9. Strategy Needs Structure To Aim AI (00:14:11)

11 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น