Artwork

เนื้อหาจัดทำโดย Jean Jane เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Jean Jane หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Player FM - แอป Podcast
ออฟไลน์ด้วยแอป Player FM !

Public vs. Private Bodies in Advanced AI Auditing: A Comparative Analysis

15:53
 
แบ่งปัน
 

ซีรีส์ที่ถูกเก็บถาวร ("ฟีดที่ไม่ได้ใช้งาน" status)

When? This feed was archived on December 08, 2024 04:36 (5M ago). Last successful fetch was on October 24, 2024 13:55 (6M ago)

Why? ฟีดที่ไม่ได้ใช้งาน status. เซิร์ฟเวอร์ของเราไม่สามารถดึงฟีดพอดคาสท์ที่ใช้งานได้สักระยะหนึ่ง

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 445042773 series 3604081
เนื้อหาจัดทำโดย Jean Jane เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Jean Jane หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Public vs. Private Bodies in Advanced AI Auditing

This Episode reviews the main themes and key findings from the provided excerpt of "Public vs Private Bodies_AIGI_2024.pdf". This paper analyzes the role of public and private bodies in auditing advanced AI systems, particularly focusing on AI Safety Institutes and advanced AI Labs.

Key Themes:

  • Balancing independence and efficiency in AI auditing: The paper highlights the inherent trade-off between auditor independence (crucial for public safety) and resource efficiency (often found in private auditors). This trade-off must be carefully considered when designing auditing regimes for advanced AI.
  • Criticality of the audit: The level of public body involvement in AI auditing should be determined by the criticality of the audit. Factors such as potential harms to third parties, risk uncertainty, verification costs, and information sensitivity contribute to criticality.
  • Capacity building in public bodies: Public bodies, such as AI Safety Institutes, need to build sufficient capacity (resources, competence, and access) to effectively audit advanced AI systems. This is crucial for maintaining audit quality and ensuring public safety.

Most Important Ideas/Facts:

  • Auditing Regime Case Analysis: The paper analyzes nine existing auditing regimes across various industries, including aviation, telecommunications, cybersecurity, finance, and life sciences. This analysis reveals key demand-side factors (industry and audit conditions) and supply-side factors (auditor characteristics) that influence auditing regime design.
  • Three-Step Logic for Auditing Regime Design: A three-step logic is proposed to determine the optimal allocation of auditing responsibilities:
  1. Criticality: High-criticality audits, with significant risks and uncertainties, necessitate independent audits by public bodies or publicly appointed auditors.
  2. Efficiency: If a high volume of audits is required and skill specificity is low, private auditors can provide efficient solutions.
  3. Ecosystem: Public bodies should foster a robust auditing ecosystem by setting standards, providing training, and facilitating access to information and resources.
  • Capacity Estimates for Public Bodies: The paper provides initial estimates for the resources, competence, and access required for public bodies to effectively engage in advanced AI auditing. These estimates are based on case study analyses and highlight the substantial investment needed for building capacity.
  • Recommendations for AI Safety Institutes:Prioritize high-criticality audits.
  • Build internal capacity and competence through direct involvement in auditing.
  • Secure and utilize access to models and facilities.
  • Foster the auditing ecosystem through partnerships, training, and knowledge sharing.
  • Maintain independence and transparency.
  • Utilize open models for audit development and share methods.
  • Recommendations for Advanced AI Labs:Share access and expertise with auditors.
  • Gradually increase access levels to build trust with auditors.
  • Commit to post-audit actions and responsible scaling policies.

AI podcast 2024, artificial intelligence trends, AI advancements, AI technology, AI in 2024, machine learning, deep learning, AI innovation, AI tools, AI in business, AI in healthcare, AI in finance, AI in education, AI for industries, AI-powered solutions, AI ethics, AI regulation, AI startups

Hosted on Acast. See acast.com/privacy for more information.

  continue reading

79 ตอน

Artwork
iconแบ่งปัน
 

ซีรีส์ที่ถูกเก็บถาวร ("ฟีดที่ไม่ได้ใช้งาน" status)

When? This feed was archived on December 08, 2024 04:36 (5M ago). Last successful fetch was on October 24, 2024 13:55 (6M ago)

Why? ฟีดที่ไม่ได้ใช้งาน status. เซิร์ฟเวอร์ของเราไม่สามารถดึงฟีดพอดคาสท์ที่ใช้งานได้สักระยะหนึ่ง

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 445042773 series 3604081
เนื้อหาจัดทำโดย Jean Jane เนื้อหาพอดแคสต์ทั้งหมด รวมถึงตอน กราฟิก และคำอธิบายพอดแคสต์ได้รับการอัปโหลดและจัดหาให้โดยตรงจาก Jean Jane หรือพันธมิตรแพลตฟอร์มพอดแคสต์ของพวกเขา หากคุณเชื่อว่ามีบุคคลอื่นใช้งานที่มีลิขสิทธิ์ของคุณโดยไม่ได้รับอนุญาต คุณสามารถปฏิบัติตามขั้นตอนที่แสดงไว้ที่นี่ https://th.player.fm/legal
Public vs. Private Bodies in Advanced AI Auditing

This Episode reviews the main themes and key findings from the provided excerpt of "Public vs Private Bodies_AIGI_2024.pdf". This paper analyzes the role of public and private bodies in auditing advanced AI systems, particularly focusing on AI Safety Institutes and advanced AI Labs.

Key Themes:

  • Balancing independence and efficiency in AI auditing: The paper highlights the inherent trade-off between auditor independence (crucial for public safety) and resource efficiency (often found in private auditors). This trade-off must be carefully considered when designing auditing regimes for advanced AI.
  • Criticality of the audit: The level of public body involvement in AI auditing should be determined by the criticality of the audit. Factors such as potential harms to third parties, risk uncertainty, verification costs, and information sensitivity contribute to criticality.
  • Capacity building in public bodies: Public bodies, such as AI Safety Institutes, need to build sufficient capacity (resources, competence, and access) to effectively audit advanced AI systems. This is crucial for maintaining audit quality and ensuring public safety.

Most Important Ideas/Facts:

  • Auditing Regime Case Analysis: The paper analyzes nine existing auditing regimes across various industries, including aviation, telecommunications, cybersecurity, finance, and life sciences. This analysis reveals key demand-side factors (industry and audit conditions) and supply-side factors (auditor characteristics) that influence auditing regime design.
  • Three-Step Logic for Auditing Regime Design: A three-step logic is proposed to determine the optimal allocation of auditing responsibilities:
  1. Criticality: High-criticality audits, with significant risks and uncertainties, necessitate independent audits by public bodies or publicly appointed auditors.
  2. Efficiency: If a high volume of audits is required and skill specificity is low, private auditors can provide efficient solutions.
  3. Ecosystem: Public bodies should foster a robust auditing ecosystem by setting standards, providing training, and facilitating access to information and resources.
  • Capacity Estimates for Public Bodies: The paper provides initial estimates for the resources, competence, and access required for public bodies to effectively engage in advanced AI auditing. These estimates are based on case study analyses and highlight the substantial investment needed for building capacity.
  • Recommendations for AI Safety Institutes:Prioritize high-criticality audits.
  • Build internal capacity and competence through direct involvement in auditing.
  • Secure and utilize access to models and facilities.
  • Foster the auditing ecosystem through partnerships, training, and knowledge sharing.
  • Maintain independence and transparency.
  • Utilize open models for audit development and share methods.
  • Recommendations for Advanced AI Labs:Share access and expertise with auditors.
  • Gradually increase access levels to build trust with auditors.
  • Commit to post-audit actions and responsible scaling policies.

AI podcast 2024, artificial intelligence trends, AI advancements, AI technology, AI in 2024, machine learning, deep learning, AI innovation, AI tools, AI in business, AI in healthcare, AI in finance, AI in education, AI for industries, AI-powered solutions, AI ethics, AI regulation, AI startups

Hosted on Acast. See acast.com/privacy for more information.

  continue reading

79 ตอน

ทุกตอน

×
 
Loading …

ขอต้อนรับสู่ Player FM!

Player FM กำลังหาเว็บ

 

คู่มืออ้างอิงด่วน

ฟังรายการนี้ในขณะที่คุณสำรวจ
เล่น