The O'Reilly Data Show Podcast explores the opportunities and techniques driving big data, data science, and AI.
…
continue reading
1
Machine learning for operational analytics and business intelligence
51:38
51:38
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
51:38
In this episode of the Data Show, I speak with Peter Bailis, founder and CEO of Sisu, a startup that is using machine learning to improve operational analytics. Bailis is also an assistant professor of computer science at Stanford University, where he conducts research into data-intensive systems and where he is co-founder of the DAWN Lab. We had a…
…
continue reading
1
Machine learning and analytics for time series data
40:31
40:31
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
40:31
In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, an…
…
continue reading
1
Understanding deep neural networks
39:31
39:31
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
39:31
In this episode of the Data Show, I speak with Michael Mahoney, a member of RISELab, the International Computer Science Institute, and the Department of Statistics at UC Berkeley. A physicist by training, Mahoney has been at the forefront of many important problems in large-scale data analysis. On the theoretical side, his works spans algorithmic a…
…
continue reading
1
Becoming a machine learning practitioner
33:22
33:22
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
33:22
In this episode of the Data Show, I speak with Kesha Williams, technical instructor at A Cloud Guru, a training company focused on cloud computing. As a full stack web developer, Williams became intrigued by machine learning and started teaching herself the ML tools on Amazon Web Services. Fast forward to today, Williams has built some well-regarde…
…
continue reading
1
Labeling, transforming, and structuring training data sets for machine learning
40:51
40:51
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
40:51
In this episode of the Data Show, I speak with Alex Ratner, project lead for Stanford’s Snorkel open source project; Ratner also recently garnered a faculty position at the University of Washington and is currently working on a company supporting and extending the Snorkel project. Snorkel is a framework for building and managing training data. Base…
…
continue reading
1
Make data science more useful
35:04
35:04
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
35:04
In this episode of the Data Show, I speak with Cassie Kozyrkov, technical director and chief decision scientist at Google Cloud. She describes “decision intelligence” as an interdisciplinary field concerned with all aspects of decision-making, and which combines data science with the behavioral sciences. Most recently she has been focused on develo…
…
continue reading
1
Acquiring and sharing high-quality data
39:20
39:20
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
39:20
In this episode of the Data Show, I spoke with Roger Chen, co-founder and CEO of Computable Labs, a startup focused on building tools for the creation of data networks and data exchanges. Chen has also served as co-chair of O’Reilly’s Artificial Intelligence Conference since its inception in 2016. This conversation took place the day after Chen and…
…
continue reading
1
Tools for machine learning development
39:24
39:24
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
39:24
In this week’s episode of the Data Show, we’re featuring an interview Data Show host Ben Lorica participated in for the Software Engineering Daily Podcast, where he was interviewed by Jeff Meyerson. Their conversation mainly centered around data engineering, data architecture and infrastructure, and machine learning (ML). Here are a few highlights:…
…
continue reading
1
Enabling end-to-end machine learning pipelines in real-world applications
42:53
42:53
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
42:53
In this episode of the Data Show, I spoke with Nick Pentreath, principal engineer at IBM. Pentreath was an early and avid user of Apache Spark, and he subsequently became a Spark committer and PMC member. Most recently his focus has been on machine learning, particularly deep learning, and he is part of a group within IBM focused on building open s…
…
continue reading
1
Bringing scalable real-time analytics to the enterprise
37:12
37:12
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
37:12
In this episode of the Data Show, I spoke with Dhruba Borthakur (co-founder and CTO) and Shruti Bhat (SVP of Product) of Rockset, a startup focused on building solutions for interactive data science and live applications. Borthakur was the founding engineer of HDFS and creator of RocksDB, while Bhat is an experienced product and marketing executive…
…
continue reading
1
Applications of data science and machine learning in financial services
42:32
42:32
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
42:32
In this episode of the Data Show, I spoke with Jike Chong, chief data scientist at Acorns, a startup focused on building tools for micro-investing. Chong has extensive experience using analytics and machine learning in financial services, and he has experience building data science teams in the U.S. and in China. We had a great conversation spannin…
…
continue reading
1
Real-time entity resolution made accessible
27:09
27:09
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
27:09
In this episode of the Data Show, I spoke with Jeff Jonas, CEO, founder and chief scientist of Senzing, a startup focused on making real-time entity resolution technologies broadly accessible. He was previously a fellow and chief scientist of context computing at IBM. Entity resolution (ER) refers to techniques and tools for identifying and linking…
…
continue reading
1
Why companies are in need of data lineage solutions
34:29
34:29
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
34:29
In this episode of the Data Show, I spoke with Neelesh Salian, software engineer at Stitch Fix, a company that combines machine learning and human expertise to personalize shopping. As companies integrate machine learning into their products and systems, there are important foundational technologies that come into play. This shouldn’t come as a sho…
…
continue reading
1
What data scientists and data engineers can do with current generation serverless technologies
36:32
36:32
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
36:32
In this episode of the Data Show, I spoke with Avner Braverman, co-founder and CEO of Binaris, a startup that aims to bring serverless to web-scale and enterprise applications. This conversation took place shortly after the release of a seminal paper from UC Berkeley (“Cloud Programming Simplified: A Berkeley View on Serverless Computing”), and thi…
…
continue reading
1
It’s time for data scientists to collaborate with researchers in other disciplines
36:08
36:08
เล่นในภายหลัง
เล่นในภายหลัง
ลิสต์
ถูกใจ
ที่ถูกใจแล้ว
36:08
In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: f…
…
continue reading